Skip to main content

Vertex-Connectivity for Node Failure Identification in Boolean Network Tomography

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2019)

Abstract

In this paper we study the node failure identification problem in undirected graphs by means of Boolean Network Tomography. We argue that vertex connectivity plays a central role. We show tight bounds on the maximal identifiability in a particular class of graphs, the Line of Sight networks. We prove slightly weaker bounds on arbitrary networks. Finally we initiate the study of maximal identifiability in random networks. We focus on two models: the classical Erdős-Rényi model, and that of Random Regular graphs. The framework proposed in the paper allows a probabilistic analysis of the identifiability in random networks giving a tradeoff between the number of monitors to place and the maximal identifiability.

The first two authors kindly acknowledge the partial support by the MIUR under the grant “Dipartimenti di eccellenza 2018–2022” of the Department of Computer Science of Sapienza University. The research was also partly supported by a visiting fellowship of the University of Liverpool and the Networks Sciences & Technologies (NeST) initiative of the University of Liverpool (https://www.liverpool.ac.uk/network-science-technologies/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18, 155–193 (1979)

    Article  MathSciNet  Google Scholar 

  2. Bartolini, N., He, T., Khamfroush, H.: Fundamental limits of failure identifiability by Boolean network tomography. In: INFOCOM 2017. IEEE (2017)

    Google Scholar 

  3. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980)

    Article  MathSciNet  Google Scholar 

  4. Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica 7, 327–341 (1987)

    Article  MathSciNet  Google Scholar 

  5. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  6. Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent developments. Stat. Sci. 19(3), 499–517 (2004)

    Article  MathSciNet  Google Scholar 

  7. Cheraghchi, M., Karbasi, A., Mohajer, S., Saligrama, V.: Graph-constrained group testing. IEEE Trans. Inf. Theory 58(1), 248–262 (2012)

    Article  MathSciNet  Google Scholar 

  8. Coates, M., Hero, A.O., Nowak, R., Yu, B.: Internet tomography. IEEE Signal Process. Mag. 19, 47–65 (2002)

    Article  Google Scholar 

  9. Czumaj, A., Wang, X.: Communication problems in random line-of-sight ad-hoc radio networks. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 70–81. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74871-7_7

    Chapter  Google Scholar 

  10. Devroye, L., Farczadi, L.: Connectivity for line-of-sight networks in higher dimensions. Discrete Math. Theor. Comput. Sci. 15(2), 71–86 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Du, D.-M., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  12. Duffield, N.G.: Simple network performance tomography. In: Proceedings of the 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, FL, USA, 27–29 October 2003, pp. 210–215. ACM (2003)

    Google Scholar 

  13. Frieze, A.M., Kleinberg, J.M., Ravi, R., Debany, W.: Line-of-sight networks. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, 7–9 January 2007, pp. 968–977. SIAM (2007)

    Google Scholar 

  14. Ghita, D., Karakus, C., Argyraki, K., Thiran, P.: Shifting network tomography toward a practical goal. In: Proceedings of the Seventh COnference on Emerging Networking EXperiments and Technologies, CoNEXT 2011, pp. 24:1–24:12. ACM, New York (2011)

    Google Scholar 

  15. Galesi, N., Ranjbar, F.: Tight bounds for maximal identifiability of failure nodes in boolean network tomography. In: 2018 IEEE 38th International Conference on Distributed Computing Systems, pp. 212–222. IEEE (2018)

    Google Scholar 

  16. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    Book  Google Scholar 

  17. Ma, L., He, T., Leung, K.K., Swami, A., Towsley, D.: Inferring link metrics from end-to-end path measurements: identifiability and monitor placement. IEEE/ACM Trans. Netw. 22(4), 1351–1368 (2014)

    Article  Google Scholar 

  18. Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K., Lowe, J.: Node failure localization via network tomography. In: Williamson, C., Akella, A., Taft, N. (eds.) Proceedings of the 2014 Internet Measurement Conference, IMC 2014, Vancouver, BC, Canada, 5–7 November 2014, pp. 195–208. ACM (2014)

    Google Scholar 

  19. Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K.: Network capability in localizing node failures via end-to-end path measurements. IEEE/ACM Trans. Netw. 25(1), 434–450 (2017)

    Article  Google Scholar 

  20. Ren, W., Dong, W.: Robust network tomography: K-identifiability and monitor assignment. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April 2016, pp. 1–9. IEEE (2016)

    Google Scholar 

  21. Sangha, P., Wong, P.W.H., Zito, M.: Independent sets in restricted line of sight networks. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 211–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_16

    Chapter  Google Scholar 

  22. Sangha, P., Zito, M.: Finding large independent sets in line of sight networks. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 332–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_29

    Chapter  Google Scholar 

  23. Vardi, Y.: Network tomography: estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91(433), 365–377 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Zito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galesi, N., Ranjbar, F., Zito, M. (2019). Vertex-Connectivity for Node Failure Identification in Boolean Network Tomography. In: Dressler, F., Scheideler, C. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2019. Lecture Notes in Computer Science(), vol 11931. Springer, Cham. https://doi.org/10.1007/978-3-030-34405-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34405-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34404-7

  • Online ISBN: 978-3-030-34405-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics