Skip to main content

Evacuation of Equilateral Triangles by Mobile Agents of Limited Communication Range

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11931))

Abstract

We consider the problem of evacuating \(k \ge 2\) mobile agents from a unit-sided equilateral triangle through an exit located at an unknown location on the perimeter of the triangle. The agents are initially located at the centroid of the triangle and they can communicate with other agents at distance at most r with \(0\le r \le 1\). An agent can move at speed at most one, and finds the exit only when it reaches the point where the exit is located. The agents can collaborate in the search for the exit. The goal of the evacuation problem is to minimize the evacuation time, defined as the worst-case time for all the agents to reach the exit. We propose and analyze several algorithms for the problem of evacuation by \(k \ge 2\) agents; our results indicate that the best strategy to be used varies depending on the values of r and k. For two agents, we give four algorithms, the last of which achieves the best performance for all sub-ranges of r in the range \(0 < r \le 1\). We also show a lower bound on the evacuation time of two agents for any \(r < 0.336\). For \(k >2\) agents, we study three strategies for evacuation: in the first strategy, called X3C, agents explore all three sides of the triangle before connecting to exchange information; in the second strategy, called X1C, agents explore a single side of the triangle before connecting; in the third strategy, called CXP, the agents travel to the perimeter to locations in which they are connected, and explore it while always staying connected. For 3 or 4 agents, we show that X3C works better than X1C for small values of r, while X1C works better for larger values of r. Finally, we show that for any r, evacuation of \(k=6 +2\lceil (\frac{1}{r}-1\rceil \) agents can be done using the CXP strategy in time \(1+\sqrt{3}/3\), which is optimal in terms of time, and asymptotically optimal in terms of the number of agents.

This research was supported by NSERC, Canada.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  2. BaezaYates, R.A., Culberson, J.C., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bagheri, I.: Evacuation of equilateral triangles by mobile agents of limited communication range. Master’s thesis, Concordia University, Canada (2019)

    Google Scholar 

  4. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  Google Scholar 

  5. Beck, A., Newman, D.: Yet more on the linear search problem. Israel J. Math. 8(4), 419–429 (1970)

    Article  MathSciNet  Google Scholar 

  6. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  7. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10

    Chapter  Google Scholar 

  8. Brandt, S., Uitto, J., Wattenhofer, R.: A tight bound for semi-synchronous collaborative grid exploration. In: 32nd International Symposium on Distributed Computing (DISC) (2018)

    Google Scholar 

  9. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Chapter  Google Scholar 

  10. Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating an equilateral triangle in the face-to-face model. In: Proceedings of OPODIS 2017, pp. 11:1–11:16 (2017)

    Google Scholar 

  11. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. Theor. Comput. Sci. 709, 20–30 (2018)

    Article  MathSciNet  Google Scholar 

  12. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  Google Scholar 

  13. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_10

    Chapter  Google Scholar 

  14. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceedings of PODC, pp. 405–413. ACM (2016)

    Google Scholar 

  15. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares, extended version, in preparation

    Google Scholar 

  16. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  Google Scholar 

  17. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoret. Comput. Sci. 361(2), 342–355 (2006)

    Article  MathSciNet  Google Scholar 

  18. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  19. Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many ants does it take to find the food? Theor. Comput. Sci. 608, 255–267 (2015)

    Article  MathSciNet  Google Scholar 

  20. Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17458-2_3

    Chapter  Google Scholar 

  21. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots (Synthesis Lectures on Distributed Computing Theory). Morgan & Claypool Publishers, San Rafael (2016)

    MATH  Google Scholar 

  22. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theoret. Comput. Sci. 407(1–3), 412–447 (2008)

    Article  MathSciNet  Google Scholar 

  23. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoret. Comput. Sci. 345(2–3), 331–344 (2005)

    Article  MathSciNet  Google Scholar 

  24. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  Google Scholar 

  25. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 280–289. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_135

    Chapter  Google Scholar 

  26. Pattanayak, D., Ramesh, H., Mandal, P.S., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: Proceedings of ICDCN 2018, pp. 20:1–20:4 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Narayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagheri, I., Narayanan, L., Opatrny, J. (2019). Evacuation of Equilateral Triangles by Mobile Agents of Limited Communication Range. In: Dressler, F., Scheideler, C. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2019. Lecture Notes in Computer Science(), vol 11931. Springer, Cham. https://doi.org/10.1007/978-3-030-34405-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34405-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34404-7

  • Online ISBN: 978-3-030-34405-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics