Skip to main content

Discovery, Overview and Motivation of Beauty Physics

  • Chapter
  • First Online:
  • 204 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the first part of this chapter, the discovery and current knowledge of the properties of the b quark are reviewed. Then the current status and prospects for deepening this knowledge with the LHC experiments are detailed. Finally, tagging techniques and measurements of b quarks as a probe are discussed.

Why is bottom quark physics so interesting? The cynic might argue that the labs are into bottom quark physics because it’s affordable.

—Edward H. Thorndike [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Two legends exist regarding the name of the particle. The first is that “Upsilon” stand for “up\(+\)psi”, in reference to the \(J/\psi \). The other legend is related to the spokesperson and leader of team’s name: the Nobel-prized Leon Lederman. Observing first a resonance at 6\(\,\text {GeV}\) in 1976, the members of the team agreed that its name would be Upsilon if it would be established, or Oops-Leon if it would not. The resonance at 6\(\,\text {GeV}\) turned out to be nothing else than a fluctuation; however, using the same experimental set-up, they found a new resonance at 9\(\,\text {GeV}\): this time a real resonance. They decided to keep the name Upsilon.

  2. 2.

    DOppel-RIng Speicher.

  3. 3.

    Named after the magnet of the detector.

  4. 4.

    Stanford Positron Electron Asymmetric Rings, situated at the SLAC.

  5. 5.

    One obvious limitation of this potential is that it does not allow the fragmentation of a pair of quarks. However, it successfully allowed to perform spectroscopy and describe lifetime.

  6. 6.

    This appellation has hardly gone beyond the joke “there is no truth in the SM” while physicists were struggling at finding it.

  7. 7.

    Named after the location of the detector.

  8. 8.

    Named Collider Detector at Fermilab.

  9. 9.

    One should maybe also mention an attempt of B factory that failed, B-TeV, because of termination by the U.S. government.

  10. 10.

    French word for beauty.

  11. 11.

    HERA Beauty.

  12. 12.

    Named in reference to the relation of Zeus and Hera in the mythology.

  13. 13.

    HERA-1.

  14. 14.

    Observation conventionally means at least five sigma of significance.

References

  1. Thorndike EH (1999) Bottom quark physics: past, present, future. In: Probing luminous and dark matter. Proceedings, symposium in honor of Adrian Melissinos, Rochester, USA, 24–25 September 1999, pp 127–159. arXiv:hep-ex/0003027 [hep-ex]

  2. Appel JA et al (1974) A study of di-lepton production in proton collisions at NAL

    Google Scholar 

  3. Fermilab (1977) Discoveries at Fermilab - discovery of the bottom quark. http://lepewwg.web.cern.ch/LEPEWWG

  4. Herb SW et al (1977) Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-nucleus collisions. Phys Rev Lett 39:252–255. https://doi.org/10.1103/PhysRevLett.39.252

  5. Fermilab history and archives project. Discovery of the bottom quark, upsilon. https://history.fnal.gov/botqrk.html. Accessed 3 Dec 2017

  6. CERN courrier (2017) Revisiting the b revolution. http://cerncourier.com/cws/article/cern/68794

  7. Augustin JE et al (1974) Discovery of a narrow resonance in \(e^{+}e^{-}\) annihilation. Phys Rev Lett 33:1406–1408 [Adv Exp Phys 5:141 (1976)]. https://doi.org/10.1103/PhysRevLett.33.1406

  8. Aubert JJ et al (1974) Experimental observation of a heavy particle \(J\). Phys Rev Lett 33:1404–1406. https://doi.org/10.1103/PhysRevLett.33.1404

  9. Bjørken BJ, Glashow SL (1964) Elementary particles and SU(4). Phys Lett 11(3):255–257. https://doi.org/10.1016/0031-9163(64)90433-0. ISSN:0031-9163

  10. Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with lepton-hadron symmetry. Phys Rev D 2:1285–1292. https://doi.org/10.1103/PhysRevD.2.1285

  11. Appelquist T, Politzer HD (1975) Heavy quarks and \(e^{+}e^{-}\) annihilation. Phys Rev Lett 34:43–45. https://doi.org/10.1103/PhysRevLett.34.43

  12. Kobayashi M, Maskawa T (1973) CP-violation in the renormalizable theory of weak interaction. Prog Theor Phys 49(2):652–657. https://doi.org/10.1143/PTP.49.652

  13. Fabjan CW, McCubbin N (2004) Physics at the CERN intersecting storage rings (ISR) 1978–1983. Phys Rep 403–404, 165–175. https://doi.org/10.1016/j.physrep.2004.08.018, http://www.sciencedirect.com/science/article/pii/S0370157304003308. ISSN:0370-1573

  14. Cobb JH et al (1977) The cross section for the production of massive electron pairs and the \(\Upsilon \) (9.5 GeV) in proton-proton collisions at the CERN ISR. Phys Lett B 72(2):273–277. https://doi.org/10.1016/0370-2693(77)90720-1. ISSN:0370-2693

  15. Berger Ch et al (1978) Observation of a narrow resonance formed in e+e annihilation at 9.46 GeV. Phys Lett B 76(2):243–245. https://doi.org/10.1016/0370-2693(78)90287-3. ISSN:0370-2693

  16. Darden CW et al (1978) Observation of a narrow resonance at 9.46 GeV in electron - positron annihilations. Phys Lett B 76(2):246–248. https://doi.org/10.1016/0370-2693(78)90288-5. ISSN:0370-2693

  17. Darden CW et al (1979) Study of the (9.46) meson in electron-positron annihilations. Phys Lett B 80(4):419–422. https://doi.org/10.1016/0370-2693(79)91204-8. ISSN:0370-2693

  18. Bienlein JK et al (1978) Observation of a narrow resonance at 10.02 GeV in e+e annihilations. Phys Lett B 78(2):360–363. https://doi.org/10.1016/0370-2693(78)90040-0. ISSN:0370-2693

  19. Eichten E et al (1980) Charmonium: comparison with experiment. Phys Rev D 21:203. https://doi.org/10.1103/PhysRevD.21.203

  20. Franzini P, Lee-Franzini J (1982) Upsilon physics at CESR. Phys Rep 81(3):239–291. https://doi.org/10.1016/0370-1573(82)90027-8. ISSN:0370-1573

  21. Andrews D et al (1980) Observation of three upsilon states. Phys Rev Lett 44:1108–1111. https://doi.org/10.1103/PhysRevLett.44.1108

  22. Andrews D et al (1980) Observation of a fourth upsilon state in \(e^{+}e^{-}\) annihilations. Phys Rev Lett 45:219–221. https://doi.org/10.1103/PhysRevLett.45.219

  23. Finocchiaro G et al (1980) Observation of the upsilon at CESR. Phys Rev Lett 45:222. https://doi.org/10.1103/PhysRevLett.45.222

  24. Tanabashi M et al (2018) Review of particle physics. Phys Rev D 98(3):030001

    Google Scholar 

  25. Besson D, Skwarnicki T (1993) \(\upsilon \) spectroscopy. Ann Rev Nucl Part Sci 43:333–378. https://doi.org/10.1146/annurev.ns.43.120193.002001

  26. Abe T et al (2010) Belle II technical design report. arXiv:1011.0352 [physics.ins-det]

  27. Cassel DG (2007) CLEO B physics. In: ARGUS Fest, 20 years of B meson mixing 1987–2007. Proceedings, ARGUS-symposium, DESY, Hamburg, Germany, 9 November 2007. https://doi.org/10.3204/DESY-PROC-2008-01/e307

  28. Lee-Franzini J (1998) Hidden and open beauty in CUSB. AIP Conf Proc 424(1):85–96. https://doi.org/10.1063/1.55115, arXiv:hep-ex/9709025 [hep-ex]

  29. Albrecht H et al (1989) Argus: a universal detector at DORIS II. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 275(1):1–48

    Google Scholar 

  30. Albajar C et al (1987) Beauty production at the CERN proton-antiproton collider. In: 186, pp 237–246

    Google Scholar 

  31. Albajar C et al (1987) Beauty production at the CERN proton - anti-proton collider. 1. Phys Lett B 186:237–246. https://doi.org/10.1016/0370-2693(87)90287-5

  32. Albajar C et al (1988) Measurement of the bottom quark production cross-section in proton - anti-proton collisions at s**\((1/2) = 0.63-\)TeV. Phys Lett B 213:405 (473 (1988)). https://doi.org/10.1016/0370-2693(88)91785-6

  33. Abazov VM et al (2010) \(b\)-jet identification in the D0 experiment. Nucl Instrum Methods A 620:490–517. https://doi.org/10.1016/j.nima.2010.03.118, arXiv:1002.4224 [hep-ex]

  34. Abe F et al (1996) Inclusive jet cross section in \({\bar{p}}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev Lett 77:438–443. https://doi.org/10.1103/PhysRevLett.77.438, arXiv:hep-ex/9601008 [hep-ex]

  35. Abbott B et al (2000) Cross section for b jet production in \({\bar{p}}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev Lett 85:5068–5073. https://doi.org/10.1103/PhysRevLett.85.5068, arXiv:hep-ex/0008021 [hep-ex]

  36. Abbott B et al (2000) Cross section for b-jet production in pp collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev Lett 85(24):5068

    Google Scholar 

  37. Abe F et al (1993) Measurement of bottom quark production in 1.8 TeV \(p{\bar{p}}\) collisions using semileptonic decay muons. Phys Rev Lett 71:2396–2400. https://doi.org/10.1103/PhysRevLett.71.2396

  38. Abe F et al (1993) Measurement of the bottom quark production cross-section using semileptonic decay electrons in \(p{\bar{p}}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev Lett 71:500–504. https://doi.org/10.1103/PhysRevLett.71.500

  39. Abe F et al (1995) Measurement of the \(B\) meson differential cross-section, \(d\sigma /dp_{T}\) , in \(p{\bar{p}}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev Lett 75:1451–1455. https://doi.org/10.1103/PhysRevLett.75.1451, arXiv:hep-ex/9503013 [hep-ex]

  40. Behnke O, Geiser A, Lisovyi M (2015) Charm, beauty and top at HERA. Prog Part Nucl Phys 84:1–72. https://doi.org/10.1016/j.ppnp.2015.06.002, arXiv:1506.07519 [hep-ex]

  41. Chekanov S et al (2009) Measurement of beauty production from dimuon events at HERA. JHEP 02:032. https://doi.org/10.1088/1126-6708/2009/02/032, arXiv:0811.0894 [hep-ex]

  42. Rozen Y, Pierre F, Calderini G (2000) B physics at LEP. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 446(1):37–52. https://doi.org/10.1016/S0168-9002(00)00016-4. ISSN:0168-9002

  43. Rozen Y (2003) The legacy of LEP B program. In: Nuclear physics B - proceedings supplements 120. Supplement C. Proceedings of the 8th international conference on B-physics at hadron machines, pp 83–90. https://doi.org/10.1016/S0920-5632(03)01885-1. ISSN:0920-5632

  44. Abdallah J et al (2011) A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole. Eur Phys J C 71:1557. https://doi.org/10.1140/epjc/s10052-011-1557-x, arXiv:1102.4748 [hep-ex]

  45. Abe K et al (2004) Observation of large \(CP\) violation and evidence for direct \(CP\) violation in \(B^{0} \rightarrow {\pi ^{+}}{\pi ^{-}}\) decays. Phys Rev Lett 93:021601. https://doi.org/10.1103/PhysRevLett.93.021601

  46. Chao Y et al (2004) Evidence for direct \(CP\) violation in \(B^{0} \rightarrow {K^{+}}{\pi ^{-}}\) decays. Phys Rev Lett 93:191802. https://doi.org/10.1103/PhysRevLett.93.191802

  47. Gershon T, Needham M (2015) Heavy flavour physics at the LHC. Comptes Rendus Phys 16:435–447. https://doi.org/10.1016/j.crhy.2015.04.001, arXiv:1408.0403 [hep-ex]

  48. Chatrchyan S et al (2012) Inclusive \(b\)-jet production in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. JHEP 04:084. https://doi.org/10.1007/JHEP04(2012)084, arXiv:1202.4617 [hep-ex]

  49. Khachatryan V et al (2011) Measurement of the \(B^+\) production cross section in pp collisions at \(\sqrt{s} = 7\) TeV. Phys Rev Lett 106:112001. https://doi.org/10.1103/PhysRevLett.106.112001, arXiv:1101.0131 [hep-ex]

  50. Khachatryan V et al (2011) Inclusive b-hadron production cross section with muons in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. JHEP 03:090. https://doi.org/10.1007/JHEP03(2011)090, arXiv:1101.3512 [hep-ex]

  51. Chatrchyan S et al (2011) Measurement of the \(B^0\) production cross section in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. Phys Rev Lett 106:252001. https://doi.org/10.1103/PhysRevLett.106.252001, arXiv:1104.2892 [hep-ex]

  52. Chatrchyan S et al (2011) Measurement of the strange \(B\) meson production cross section with J/Psi \(\phi \) decays in \(pp\) collisions at \(\sqrt{s}= 7\) TeV. Phys Rev D 84:052008. https://doi.org/10.1103/PhysRevD.84.052008, arXiv:1106.4048 [hep-ex]

  53. Aad G et al (2011) Measurement of the inclusive and dijet cross-sections of \(b^{-}\) jets in \(pp\) collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector. Eur Phys J C 71:1846. https://doi.org/10.1140/epjc/s10052-011-1846-4, arXiv:1109.6833 [hep-ex]

  54. Aad G et al (2012) Measurement of the b-hadron production cross section using decays to \(D^{*}\mu ^{-}X\) final states in pp collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector. Nucl Phys B 864:341–381. https://doi.org/10.1016/j.nuclphysb.2012.07.009, arXiv:1206.3122 [hep-ex]

  55. Aad G et al (2013) Measurement of the differential cross-section of \(B^{+}\) meson production in pp collisions at \(\sqrt{s} = 7\) TeV at ATLAS. JHEP 10:042. https://doi.org/10.1007/JHEP10(2013)042, arXiv:1307.0126 [hep-ex]

  56. Aaij R et al (2010) Measurement of \(\sigma (pp \rightarrow b{\bar{b}}X\)) at \(\sqrt{s} = 7\) TeV in the forward region. Phys Lett B 694:209–216. https://doi.org/10.1016/j.physletb.2010.10.010, arXiv:1009.2731 [hep-ex]

  57. Aaij R et al (2012) Measurement of the \(B^{\pm }\) production cross-section in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. JHEP 04:093. https://doi.org/10.1007/JHEP04(2012)093, arXiv:1202.4812 [hep-ex]

  58. Aaij R et al (2013) Measurement of B meson production cross-sections in proton-proton collisions at \(\sqrt{s} = 7\) TeV. JHEP 08:117. https://doi.org/10.1007/JHEP08(2013)117, arXiv:1306.3663 [hep-ex]

  59. Aaij R et al (2015) Measurement of \(B^{+}_{c}\) production in proton-proton collisions at \(\sqrt{s} = 8\) TeV. Phys Rev Lett 114:132001. https://doi.org/10.1103/PhysRevLett.114.132001, arXiv:1411.2943 [hep-ex]

  60. Alessandro Grelli and the ALICE Collaboration (2011) Heavy flavour physics with the ALICE detector at the CERN-LHC. J Phys: Conf Ser 316(1):012025. http://stacks.iop.org/1742-6596/316/i=1/a=012025

  61. Geiser A, Definition of stable hadron in ZEUS. Private communication

    Google Scholar 

  62. Jung H, Definition of stable hadron in H1. Private communication

    Google Scholar 

  63. Scodellaro L (2017) b tagging in ATLAS and CMS. In: 5th large hadron collider physics conference (LHCP 2017) Shanghai, China, 15–20 May 2017. https://inspirehep.net/record/1621595/files/arXiv:1709.01290.pdf, arXiv:1709.01290 [hep-ex]

  64. Aad G et al (2016) Performance of \(b\)-jet identification in the ATLAS experiment. JINST 11(04):P04008. https://doi.org/10.1088/1748-0221/11/04/P04008, arXiv:1512.01094 [hep-ex]

  65. Chatrchyan S et al (2013) Identification of b-quark jets with the CMS experiment. JINST 8:P04013. https://doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462 [hep-ex]

  66. CMS Collaboration (2016) Identification of b quark jets at the CMS experiment in the LHC Run 2

    Google Scholar 

  67. Field RD (2002) The sources of \(b\) quarks at the Tevatron and their correlations. Phys Rev D 65:094006. https://doi.org/10.1103/PhysRevD.65.094006, arXiv:hep-ph/0201112 [hep-ex]

  68. Khachatryan V et al (2011) Measurement of dijet angular distributions and search for quark compositeness in pp collisions at \(sqrts\) = 7 TeV. Phys Rev Lett 106:201804. https://doi.org/10.1103/PhysRevLett.106.201804, arXiv:1102.2020 [hep-ex]

  69. Buckley A et al (2013) Rivet user manual. Comput Phys Commun 184:2803–2819. https://doi.org/10.1016/j.cpc.2013.05.021, arXiv:1003.0694 [hep-ex]

  70. Jung H (2002) Heavy quark production at the TEVATRON and HERA using \(k_{t}\) factorization with CCFM evolution. Phys Rev D 65:034015. https://doi.org/10.1103/PhysRevD.65.034015, arXiv:hep-ph/0110034 [hep-ex]

  71. Jung H (2002) Unintegrated parton densities applied to heavy quark production in the CCFM approach. J Phys G 28:971–982. https://doi.org/10.1088/0954-3899/28/5/320, arXiv:hep-ph/0109146 [hep-ex]

  72. Sirunyan AM et al (2017) Cross section measurement of \(t\)-channel single top quark production in pp collisions at \(\sqrt{s} = 13\) TeV. Phys Lett B 772:752–776. https://doi.org/10.1016/j.physletb.2017.07.047, arXiv:1610.00678 [hep-ex]

  73. Sirunyan AM et al (2017) Measurement of the \(t{\bar{t}}\) production cross section using events with one lepton and at least one jet in pp collisions at \(\sqrt{s} = 13\) TeV. JHEP 09:051. https://doi.org/10.1007/JHEP09(2017)051, arXiv:1701.06228 [hep-ex]

  74. Khachatryan V et al (2017) Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV. Phys Rev D 95(9):092001. https://doi.org/10.1103/PhysRevD.95.092001, arXiv:1610.04191 [hep-ex]

  75. Chatrchyan S et al (2012) Search for the standard model Higgs boson decaying to bottom quarks in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. Phys Lett B 710:284–306. https://doi.org/10.1016/j.physletb.2012.02.085, arXiv:1202.4195 [hep-ex]

  76. Aaboud M et al (2017) Evidence for the \(H \rightarrow b{\bar{b}}\) decay with the ATLAS detector. JHEP 12:024. https://doi.org/10.1007/JHEP12(2017)024, arXiv:1708.03299 [hep-ex]

  77. CMS Collaboration (2016) Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 13 TeV

    Google Scholar 

  78. Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV. Technical report CMS-PAS-HIG-17-009. Geneva: CERN (2017). http://cds.cern.ch/record/2292044

  79. CMS Collaboration (2017) Evidence for the decay of the Higgs boson to bottom quarks

    Google Scholar 

  80. Search for Higgs boson pair production in the final state containing two photons and two bottom quarks in proton-proton collisions at \(\sqrt{s} = 13\) TeV. Technical report CMS-PAS-HIG-17-008. Geneva: CERN (2017). http://cds.cern.ch/record/2273383

  81. Inclusive search for the standard model Higgs boson produced in pp collisions at \(\sqrt{s} = 13\) TeV using \(H \rightarrow \) bb decays. Technical report CMS-PAS-HIG-17-010. Geneva: CERN (2017). http://cds.cern.ch/record/2266164

  82. Denner A et al (2011) Standard model Higgs-boson branching ratios with uncertainties. Eur Phys J C 71:1753. https://doi.org/10.1140/epjc/s10052-011-1753-8, arXiv:1107.5909 [hep-ex]

  83. Chatrchyan S et al (2013) Search for a W’ boson decaying to a bottom quark and a top quark in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. Phys Lett B 718:1229–1251. https://doi.org/10.1016/j.physletb.2012.12.008, arXiv:1208.0956 [hep-ex]

  84. Khachatryan V et al (2015) Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks. JHEP 11:071. https://doi.org/10.1007/JHEP11(2015)071, arXiv:1506.08329 [hep-ex]

  85. Chatrchyan S et al (2013) Search for pair production of third-generation leptoquarks and top squarks in \(pp\) collisions at \(\sqrt{s}= 7\) TeV. Phys Rev Lett 110(8):081801. https://doi.org/10.1103/PhysRevLett.110.081801, arXiv:1210.5629 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. S. Connor .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Connor, P.L.S. (2019). Discovery, Overview and Motivation of Beauty Physics. In: Inclusive b Jet Production in Proton-Proton Collisions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-34383-5_5

Download citation

Publish with us

Policies and ethics