Skip to main content

Distributed Out-of-Core Approach for In-Situ Volume Rendering of Massive Dataset

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11887))

Included in the following conference series:

Abstract

This paper proposes a method that allows a fluid remote interactive visualization of a terabytes volume on a conventional workstation co-located with the acquisition devices, leveraging remote high performance computing resources. We provide a study of the behavior of an out-of-core volume renderer, using a virtual addressing system with interactive data streaming, in a distributed environment. The method implements a sort-last volume renderer with a multi-resolution ray-guided approach to visualize very large volumes of data thanks to an hybrid multi-GPUs, multi-CPUs single node rendering server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer, J., Hadwiger, M., Pfister, H.: State-of-the-art in GPU-based large-scale volume visualization. Comput. Graph. Forum 34(8), 13–37 (2015). https://doi.org/10.1111/cgf.12605

    Article  Google Scholar 

  2. Beyer, J., Hadwiger, M., Schneider, J., Jeong, W.K., Pfister, H.: Distributed terascale volume visualization using distributed shared virtual memory. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 127–128, October 2011. https://doi.org/10.1109/LDAV.2011.6092332

  3. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: GigaVoxels: ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 15–22. ACM (2009). http://dl.acm.org/citation.cfm?id=1507152

  4. Fogal, T., Schiewe, A., Kruger, J.: An analysis of scalable GPU-based ray-guided volume rendering. In: 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), pp. 43–51, October 2013. https://doi.org/10.1109/LDAV.2013.6675157

  5. Fogal, T., Childs, H., Shankar, S., Krüger, J., Bergeron, R.D., Hatcher, P.: Large data visualization on distributed memory multi-GPU clusters. In: Proceedings of the Conference on High Performance Graphics, HPG 2010, Eurographics Association, Aire-la-Ville, Switzerland, pp. 57–66 (2010). http://dl.acm.org/citation.cfm?id=1921479.1921489

  6. Gobbetti, E., Marton, F., Guitián, J.A.I.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. Vis. Comput. 24(7–9), 797–806 (2008). https://doi.org/10.1007/s00371-008-0261-9

    Article  Google Scholar 

  7. Hadwiger, M., Beyer, J., Jeong, W.K., Pfister, H.: Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach. IEEE Trans. Vis. Comput. Graph. 18(12), 2285–2294 (2012). https://doi.org/10.1109/TVCG.2012.240

    Article  Google Scholar 

  8. Kruger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: Proceedings of the 14th IEEE Visualization 2003 (VIS 2003), p. 38. IEEE Computer Society, Washington (2003). https://doi.org/10.1109/VIS.2003.10001

  9. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988). https://doi.org/10.1109/38.511

    Article  Google Scholar 

  10. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. 9(3), 245–261 (1990). https://doi.org/10.1145/78964.78965

    Article  MATH  Google Scholar 

  11. Marchesin, S., Mongenet, C., Dischler, J.M.: Multi-GPU Sort-last volume visualization. In: Proceedings of the 8th Eurographics Conference on Parallel Graphics and Visualization, EGPGV 2008, pp. 1–8. Eurographics Association, Aire-la-Ville (2008). https://doi.org/10.2312/EGPGV/EGPGV08/001-008

  12. Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual. Comput. Graph. 1(2), 99–108 (1995). https://doi.org/10.1109/2945.468400

    Article  Google Scholar 

  13. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel rendering. IEEE Comput. Graph. Appl. 14, 23–32 (1994)

    Article  Google Scholar 

  14. Moloney, B., Ament, M., Weiskopf, D., Moller, T.: Sort-first parallel volume rendering. IEEE Trans. Visualization Comput. Graph. 17(8), 1164–1177 (2011). https://doi.org/10.1109/TVCG.2010.116

    Article  Google Scholar 

  15. Müller, C., Strengert, M., Ertl, T.: Optimized volume raycasting for graphics-hardware-based cluster systems. The Eurographics Association (2006). https://doi.org/10.2312/EGPGV/EGPGV06/059-066

  16. Porter, T., Duff, T.: Compositing digital images. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1984, pp. 253–259. ACM, New York (1984). https://doi.org/10.1145/800031.808606

  17. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart Hardware-Accelerated Volume Rendering, p. 9 (2003)

    Google Scholar 

  18. Sarton, J., Courilleau, N., Remion, Y., Lucas, L.: Interactive visualization and on-demand processing of large volume data: a fully GPU-based out-of-core approach. IEEE Trans. Visual. Comput. Graph. 1 (2019). https://doi.org/10.1109/TVCG.2019.2912752

  19. Scharsach, H.: Advanced GPU Raycasting, pp. 69–76 (2005)

    Google Scholar 

  20. Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A simple and flexible volume rendering framework for graphics-hardware-based raycasting, pp. 187–241, June 2005. https://doi.org/10.1109/VG.2005.194114

  21. Zhang, J., Sun, J., Jin, Z., Zhang, Y., Zhai, Q.: Survey of parallel and distributed volume rendering: revisited. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 435–444. Springer, Heidelberg (2005). https://doi.org/10.1007/11424857_46

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the French national funds (PIA2’program “Intensive Computing and Numerical Simulation” call) under contract No. P112331-3422142 (3DNeuro Secure project). We would like to thank all the partners of the consortium led by Neoxia, the three French clusters (Cap Digital, Systematic and Medicen), Thierry Delzescaux and the Mircen team (CEA, France) for the two datasets as well as the Centre Image of the University of Reims for the VCA server used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarton, J., Remion, Y., Lucas, L. (2019). Distributed Out-of-Core Approach for In-Situ Volume Rendering of Massive Dataset. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds) High Performance Computing. ISC High Performance 2019. Lecture Notes in Computer Science(), vol 11887. Springer, Cham. https://doi.org/10.1007/978-3-030-34356-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34356-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34355-2

  • Online ISBN: 978-3-030-34356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics