Skip to main content

In-Situ Processing in Climate Science

  • Conference paper
  • First Online:
Book cover High Performance Computing (ISC High Performance 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11887))

Included in the following conference series:

Abstract

With climate simulations and earth observations, earth system sciences belong to the most data intensive scientific disciplines, and the rate at which the data is produced increases continuously. Current models supporting a higher complexity paired with an increased resolution produce more and more data that needs to be analyzed and understood. The development of alternatives to the classic post processing/visualization pipeline are therefore mandatory and discussed within this paper, with a strong focus on in-situ visualization and in-situ data processing. Although the work described here is work in progress, large parts are already implemented and tested and on the verge to be deployed in production mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    HD(CP)\(^2\)HighHigh-Definition Clouds and Precipitation to advance Climate Prediction.

  2. 2.

    ESiWACE2 – Centre of Excellence in Simulation of Weather And Climate in Europe.

  3. 3.

    MPAS – Model for Prediction Across Scales.

  4. 4.

    https://gitlab.kitware.com/paraview/paraview/issues/.

  5. 5.

    https://cinemascience.github.io/downloads.html.

  6. 6.

    http://www.wolken-online.de/wolkenatlas.htm.

  7. 7.

    http://ugrid-conventions.github.io/ugrid-conventions/.

References

  1. Zängl, G., Reinert, D., Ripodas, P., Baldauf, M.: The ICON (ICOsahedral non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core. Q. J. Roy. Meteorol. Soc. 141(687), 563–579 (2015)

    Article  Google Scholar 

  2. Heinze, R., et al.: Large-eddy simulations over Germany using ICON: a comprehensive evaluation. Q. J. Roy. Meteorol. Soc. 143, 69–100 (2016)

    Article  Google Scholar 

  3. Wes Bethel, E., Childs, H., Hansen, C., et al.: High Performance Visualization: Enabling Extreme-Scale Scientific Insight. Chapman and Hall/CRC Press, London (2016). ISBN 9781138199613

    Google Scholar 

  4. Bauer, A., et al.: In situ methods, infrastructures, and applications on HPC platforms -a state-of-the-art (STAR) report. In: Computer Graphics Forum, vol. 35, no. 3 (2016)

    Google Scholar 

  5. Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very large data. In: High Performance Visualization-Enabling Extreme-Scale Scientific Insight, pp. 357–372 (2012)

    Google Scholar 

  6. Ahrens, J., Geveci, B., Law, C.: ParaView: An End-User Tool for Large Data Visualization. Visualization Handbook. Elsevier (2005). ISBN 13: 978-0123875822

    Google Scholar 

  7. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware (2015). ISBN 978-1930934306

    Google Scholar 

  8. Larsen, M., et al.: The ALPINE in situ infrastructure: ascending from the ashes of Strawman. In: Proceedings of the in Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization (ISAV 2017), pp. 42–46. ACM, New York (2017). https://doi.org/10.1145/3144769.3144778

  9. Ayachit, U., et al.: The SENSEI generic in situ interface. In: Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), pp. 40–44 (2016)

    Google Scholar 

  10. Ayachit, U., et al.: ParaView catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV 2015), pp. 25–29. ACM (2015)

    Google Scholar 

  11. Woodring, J., Petersen, M., Schmeiss, A., Patchett, J., Ahrens, J., Hagen, H.: In situ eddy analysis in a high-resolution ocean climate model. IEEE Trans. Vis. Comput. Graph. 22(1), 857–866 (2016)

    Article  Google Scholar 

  12. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based approach to extreme scale in situ visualization and analysis. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 424–434. IEEE Press (2014)

    Google Scholar 

  13. Banesh, D., Schoonover, J.A., Ahrens, J.P., Hamann, B.: Extracting, visualizing and tracking mesoscale ocean eddies in two-dimensional image sequences using contours and moments. In: Workshop on Visualisation in Environmental Sciences (EnvirVis) (2017)

    Google Scholar 

  14. Schiffer, R.A., Rossow, W.B.: The international satellite cloud climatology project (ISCCP): the first project of the world climate research programme. Bull. Amer. Meteorol. Soc. 64, 779–784 (1983)

    Article  Google Scholar 

  15. Clyne, J., Rast, M.: A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. In: Proceedings of Visualization and Data Analysis, pp. 284–294 (2005)

    Google Scholar 

  16. Balsa Rodriguez, M., et al.: State-of-the-art in compressed GPU-based direct volume rendering. Comput. Graph. Forum 33, 77–100 (2014)

    Article  Google Scholar 

  17. Jubair, M.I., Alim, U., Röber, N., Clyne, J., Mahdavi-Amiri, A.: Icosahedral maps for a multiresolution representation of earth data. VMV: Vision Modeling and Visualization, Bayreuth, Germany (2016)

    Google Scholar 

  18. Baker, A.H., Xu, H., Hammerling, D.M., Li, S., Clyne, J.P.: Toward a multi-method approach: lossy data compression for climate simulation data. In: Kunkel, J.M., Yokota, R., Taufer, M., Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp. 30–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2_3

    Chapter  Google Scholar 

  19. Baker, A.H., Hammerling, D.M., Mickelson, S.A., et al.: Evaluating lossy data compression on climate simulation data within a large ensemble. Geoscientific Model Dev. 9, 4381–4403 (2016)

    Article  Google Scholar 

  20. Clyne, J., Mininni, P., Norton, A., Rast, M.: Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9, 301 (2007)

    Article  Google Scholar 

  21. Wald, I., et al.: OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017)

    Article  MathSciNet  Google Scholar 

  22. Parker, S.G., et al.: OptiX: a general purpose ray tracing engine. ACM Trans. Graph. 29, 66 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Röber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Röber, N., Engels, J.F. (2019). In-Situ Processing in Climate Science. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds) High Performance Computing. ISC High Performance 2019. Lecture Notes in Computer Science(), vol 11887. Springer, Cham. https://doi.org/10.1007/978-3-030-34356-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34356-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34355-2

  • Online ISBN: 978-3-030-34356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics