Skip to main content

Chemical Methods for Scaling Control

  • Chapter
  • First Online:
Corrosion and Fouling Control in Desalination Industry

Abstract

This chapter focuses on chemical methods for scaling control. We attempt to effectively present all available methods for chemical scale control, placing certain emphasis on selected case studies. Focus is given to small molecule scale inhibitors (mainly polyphosphonic acids for mineral scale inhibition), anionic polymers (mainly derivatives of polyacrylic acid and the likes for mineral scale inhibition) and neutral and cationic polymers (for silica/silicates scale inhibition). Underlying scale inhibition mechanisms, as well as various problems occurring during and due to the scale inhibition, are presented and discussed. The chapter is a concise overview of the chemical control strategies for scaling/fouling, rather than an exhaustive review of the literature. However, appropriate references are given that direct the reader to additional information, as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Amjad, K.D. Demadis, Mineral Scales and Deposits: Scientific and Technological Approaches (Elsevier, Amsterdam, 2015). ISBN: 9780444632289

    Google Scholar 

  2. K.D. Demadis, Water Treatment Processes (Nova Science Publishers, Inc, New York, 2012). ISBN: 9781621003670

    Google Scholar 

  3. T.R. Bott, Fouling of Heat Exchangers (Elsevier Science, 1995). ISBN: 9780444821867

    Google Scholar 

  4. F.N. Kemmer, The Nalco Handbook (McGraw-Hill, New York, 1998). ISBN: 0070458723

    Google Scholar 

  5. K. Sangwal, Additives and Crystallization Processes: From Fundamentals to Applications (Wiley, Chichester, 2007). ISBN: 9780470061534

    Book  Google Scholar 

  6. J.C. Cowan, D.J. Weintritt, Water-Formed Scale Deposits (Gulf Publishing Co., Houston, 1976). ISBN: 0872018962

    Google Scholar 

  7. W.D. Carlson, Reviews in mineralogy, in Mineralogical Society of America, ed. by R. J. Reeder, vol. 11, (New York, 1975), p. 191

    Google Scholar 

  8. L.N. Plummer, E. Busenberg, Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr(HCO3)2−Ca(HCO3)2−CO2-H2O solutions. Geochim. Cosmochim. Acta 46, 1011–1040 (1982)

    Google Scholar 

  9. S.N. Kazi, Fouling and fouling mitigation of calcium compounds on heat exchangers by novel colloids and surface modifications. Rev. Chem. Eng. (2019). https://doi.org/10.1515/revce-2017-0076

    Google Scholar 

  10. J.P. Miller, A portion of the system calcium carbonate-carbon dioxide-water, with geological implications. Am. J. Sci. 250, 161–203 (1952)

    Google Scholar 

  11. A. Lancia, D. Musmarra, M. Prisciandaro, Calcium sulphate, in Kirk-Othmer Encyclopedia of Chemical Technology, (Wiley, New York, 2011), pp. 1–22

    Google Scholar 

  12. D. Hasson, J. Zahavi, Mechanism of calcium sulfate scale deposition on heat transfer surfaces. Ind. Eng. Chem. Fundam. 9, 1–10 (1970)

    Google Scholar 

  13. O. Linnikov, Investigation of the initial period of sulphate scale formation Part 1. Kinetics and mechanism of calcium sulphate surface nucleation at its crystallization on a heat-exchange surface. Desalination 122, 1–14 (1999)

    Google Scholar 

  14. K.D. Demadis, Inhibition and control of colloidal silica: Can chemical additives untie the “Gordian knot” of scale formation?, Corrosion 2007, NACE-07058, 62nd Annual Conference Expo., Nashville, 11–15 March 2007

    Google Scholar 

  15. R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979). ISBN: 978-0-471-02404-0

    Google Scholar 

  16. T. Coradin, J. Livage, Effect of some amino acids and peptides on silicic acid polymerization. Colloids Surf. B. Biointerfaces 21, 329–336 (2001)

    Google Scholar 

  17. S. Binauld, M.H. Stenzel, Acid-degradable polymers for drug delivery: A decade of innovation. Chem. Commun. 49, 2082–2102 (2013)

    Google Scholar 

  18. K.D. Demadis, M. Preari, I. Antonakaki, Naturally-derived and synthetic polymers as biomimetic enhancers of silicic acid solubility in (bio)silicification processes. Pure Appl. Chem. 86, 1663–1674 (2014)

    Google Scholar 

  19. A. Spinthaki, G. Skordalou, A. Stathoulopoulou, K.D. Demadis, Modified macromolecules in the prevention of silica scale. Pure Appl. Chem. 88, 1037–1047 (2016)

    Google Scholar 

  20. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 7, 1–20 (2001)

    Google Scholar 

  21. Z.-G. Zhao, Adsorption of phenylalanine from aqueous solution onto active carbon and silica gel. Chin. J. Chem. 10, 325–330 (1992)

    Google Scholar 

  22. J.H. Kennedy, HPLC purification of pergolide using silica gel. Org. Process. Res. Dev. 1, 68–71 (1997)

    Google Scholar 

  23. H. Ehrlich, K.D. Demadis, P.G. Koutsoukos, O. Pokrovsky, Modern views on desilicification: Biosilica and abiotic silica dissolution in natural and artificial environments. Chem. Rev. 110, 4656–4689 (2010)

    Google Scholar 

  24. O.O. Taspinar, S. Ozgul-Yucel, Lipid adsorption capacities of magnesium silicate and activated carbon prepared from the same rice hull. Eur. J. Lipid Sci. Technol. 110, 742–746 (2008)

    Google Scholar 

  25. A. Spinthaki, G. Petratos, J. Matheis, W. Hater, K.D. Demadis, The precipitation of “magnesium silicate” under geothermal stresses: Formation and characterization. Geothermics 74, 172–180 (2018)

    Google Scholar 

  26. I.M. Ali, Y.H. Kotp, I.M. El-Naggar, Thermal stability, structural modifications and ion exchange properties of magnesium silicate. Desalination 259, 228–234 (2010)

    Google Scholar 

  27. I. Rashid, N. Daraghmeh, M. Al-Remawi, S.A. Leharne, B.Z. Chowdhry, A. Badwan, Characterization of chitin-metal silicates as binding superdisintegrants. J. Pharm. Sci. 98, 4887–4901 (2009)

    Google Scholar 

  28. P.R. Young, Magnesium Silicate Precipitation. Paper 466, Corrosion 93, NACE International: Houston, 1993

    Google Scholar 

  29. K.D. Demadis, Water treatment’s “Gordian Knot”. Chem. Process. 66, 29–32 (2003)

    Google Scholar 

  30. H. Kristmanndóttir, M. Ólafsson, S. Thórhallsson, Magnesium silicate scaling in district heating systems in Iceland. Geothermics 18, 191–198 (1989)

    Google Scholar 

  31. M. Brooke, Magnesium Silicate Scale in Circulating Cooling Systems. Paper 327, Corrosion 84, NACE International: Houston, 1984

    Google Scholar 

  32. T.M. Seward, Determination of the first ionization constant of silicic acid from quartz solubility in borate buffer solutions to 350°C. Geochim. Cosmochim. Acta 38, 1651–1664 (1974)

    Google Scholar 

  33. M. Morita, Y. Goto, S. Motoda, T. Fujino, Thermodynamic analysis of silica-based scale precipitation induced by magnesium ion. J. Geotherm. Res. Soc. Japan 39, 191–201 (2017)

    Google Scholar 

  34. K.D. Demadis, Recent developments in controlling silica and magnesium silicate in industrial water systems, in Science and Technology of Industrial Water Treatment, (CRC Press, London, 2010), pp. 179–203

    Chapter  Google Scholar 

  35. L.H.P. Jones, K.A. Handreck, The effect of iron and aluminium oxides on silica in solution in soils. Nature 198, 852–853 (1963)

    Google Scholar 

  36. C.J. Gabelich, W.R. Chen, T.I. Yun, B.M. Coffey, I.H. Suffet, The role of dissolved aluminum in silica chemistry for membrane processes. Desalination 180, 307–319 (2005)

    Google Scholar 

  37. J. Liu, S. Bi, L. Yang, X. Gu, P. Ma, N. Gan, X. Wang, X. Long, F. Zhang, Speciation analysis of aluminium(III) in natural waters and biological fluids by complexing with various catechols followed by differential pulse voltammetry detection. Analyst 127, 1657–1665 (2002)

    Google Scholar 

  38. T. Yokoyama, Y. Sato, Y. Maeda, T. Tarutani, R. Itoi, Siliceous deposits formed from geothermal water. I. The major constituents and the existing states of iron and aluminum. Geochem. J. 27, 375–384 (1993)

    Google Scholar 

  39. D.L. Gallup, Aluminum silicate scale formation and inhibition: Scale characterization and laboratory experiments. Geothermics 26, 483–499 (1997)

    Google Scholar 

  40. S. Lacour, V. Deluchat, J.-C. Bollinger, B. Serpaud, Complexation of trivalent cations (Al(III), Cr(III), Fe(III)) with two phosphonic acids in the pH range of fresh waters. Talanta 46, 999–100 (1998)

    Google Scholar 

  41. D.L. Gallup, Aluminium silicate scale formation and inhibition (2): Scale solubilities and laboratory and field inhibition tests. Geothermics 27, 485–501 (1998)

    Google Scholar 

  42. P. Canizares, F. Martınez, C. Jimenez, J. Lobato, M.A. Rodrigo, Comparison of the aluminum speciation in chemical and electrochemical dosing processes. Ind. Eng. Chem. Res. 45, 8749–8756 (2006)

    Google Scholar 

  43. C.C. Perry, K.L. Shafran, The systematic study of aluminium speciation in medium concentrated aqueous solutions. J. Inorg. Biochem. 87, 115–124 (2001)

    Google Scholar 

  44. B.A. Browne, Soluble aluminium silicates: Stochoiometry, stability and implications for environmental geochemistry. Science 256, 1667–1670 (1992)

    Google Scholar 

  45. T. Yokoyama, Y. Sato, M. Nakai, K. Sunahara, R. Itoi, Siliceous deposits formed from geothermal water in Kyushu, Japan: II. Distribution and state of aluminum along the growth direction of the deposits. Geochemical J 33, 13–18 (1999)

    Google Scholar 

  46. D. Carolina Figueroa Murcia, P.L. Fosbøl, K. Thomsen, E.H. Stenby, Determination of zinc sulfide solubility to high temperatures. J. Solut. Chem. 46, 1805–1817 (2017)

    Google Scholar 

  47. C.-H. Choi, Y.-W. Su, C.-H. Chang, Effects of fluid flow on the growth and assembly of ZnO nanocrystals in a continuous flow microreactor. CrystEngComm 15, 3326–3333 (2013)

    Google Scholar 

  48. M. Holmer, H. Harald Hasler-Sheetal, Sulfide intrusion in sea grasses assessed by stable sulfur isotopes – a synthesis of current results. Front. Marine Sci. 1, 64 (2014). https://doi.org/10.3389/fmars.2014.00064

    Google Scholar 

  49. X. Liang, P. Guo, G. Wang, R. Deng, D. Pan, X. Wei, Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure. RSC Adv. 2, 5044–5046 (2012)

    Google Scholar 

  50. S.V. Dorozhkin, Calcium orthophosphates. Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 1, 121–164 (2011)

    Google Scholar 

  51. S.V. Dorozhkin, Calcium orthophosphates (CaPO4): Occurrence and properties. Prog. Biomater. 5, 9–70 (2016)

    Google Scholar 

  52. S.V. Dorozhkin, Amorphous calcium orthophosphates: Nature, chemistry and biomedical applications. Int. J. Mater. Chem. 2, 19–46 (2012)

    Google Scholar 

  53. J. Berzelius, Ueber basische phosphorsaure kalkerde. Ann. Chem. Pharmac. 53, 286–288 (1845)

    Google Scholar 

  54. S.V. Dorozhkin, Calcium orthophosphates and human beings: A historical perspective from the 1770s until 1940. Biomatter. 1, 53–70 (2012)

    Google Scholar 

  55. D.R. Lide, The CRC Handbook of Chemistry and Physics, 86th edn. (CRC Press, Boca Raton, 2005). ISBN: 0849304865

    Google Scholar 

  56. R.Z. Legeros, Calcium Phosphates in Oral Biology and Medicine (Karger, Basel, 1991). ISBN: 978-3-8055-5236-3

    Google Scholar 

  57. J.C. Elliot, Structure and Chemistry of the Apatite and Other Calcium Orthophosphates (Elsevier, Amsterdam, 1994). ISBN: 9780444815828

    Google Scholar 

  58. Z. Amjad, Calcium Phosphates in Biological and Industrial Systems (Kluwer Academic Publishers, Norwell, 1998). ISBN: 9781461375210

    Google Scholar 

  59. H.A. Lowenstam, S. Weiner, Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons. Science 227, 51–53 (1985)

    Google Scholar 

  60. J.D. Termine, A.S. Posner, Infrared analysis of rat bone: Age dependency of amorphous and crystalline mineral fractions. Science 153, 1523–1525 (1966)

    Google Scholar 

  61. S. Weiner, I. Sagi, L. Addadi, Choosing the crystallization path less travelled. Science 309, 1027–1028 (2005)

    Google Scholar 

  62. Y.T. Cheng, W.L. Johnson, Disordered materials: A survey of amorphous solids. Science 235, 997–1002 (1987)

    Google Scholar 

  63. E.D. Eanes, I.H. Gillessen, A.S. Posner, Intermediate states in the precipitation of hydroxyapatite. Nature 208, 365–367 (1965)

    Google Scholar 

  64. P. Gras, C. Rey, G. André, C. Charvillat, S. Sarda, C. Combes, Crystal structure of monoclinic calcium pyrophosphate dihydrate (m-CPPD) involved in inflammatory reactions and osteoarthritis. Acta Cryst. B 72, 96–101 (2016)

    Google Scholar 

  65. C.M. Sevrain, M. Berchel, H. Couthon, P.-A. Jaffrès, Phosphonic acid: Preparation and applications. Beilstein J. Org. Chem. 13, 2186–2213 (2017)

    Google Scholar 

  66. V. Deluchat, B. Serpaud, E. Alves, C. Caullet, J.-C. Bollinger, Protonation and complexation constants of phosphonic acids with cations of environmental interest. Phosphorus Sulfur 109, 209–212 (1996)

    Google Scholar 

  67. T. Jain, E. Sanchez, E. Owens-Bennett, R. Trussell, S. Walker, H. Liu, Impacts of antiscalants on the formation of calcium solids: Implication on scaling potential of desalination concentrate. Environ. Sci. Water Res. Technol. 5, 1285–1294 (2019)

    Google Scholar 

  68. N. Wada, K. Yamashita, T. Umegaki, Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions. J. Colloid Interface Sci. 212, 357–364 (1999)

    Google Scholar 

  69. Y. Chen, Y. Zhou, Q. Yao, Y. Bu, H. Wang, W. Wu, W. Sun, Preparation of a low-phosphorous terpolymer as a scale, corrosion inhibitor, and dispersant for ferric oxide. J. Appl. Polym. Sci. 132, 41447 (2015)

    Google Scholar 

  70. S.B. Ahmed, M.M. Tlili, M.B. Amor, Influence of a polyacrylate antiscalant on gypsum nucleation and growth. Cryst. Res. Technol. 43, 935–942 (2008)

    Google Scholar 

  71. S.P. Carvalho, L.C.M. Palermo, L. Boak, K. Sorbie, E.F. Lucas, The influence of terpolymer based on amide, carboxylic and sulfonic groups on the barium sulphate inhibition. Energy Fuels 31, 10648–10654 (2017)

    Google Scholar 

  72. K.E. Papathanasiou, A. Moschona, A. Spinthaki, M. Vassaki, K.D. Demadis, Silica-based polymeric gels as platforms for delivery of phosphonate pharmaceutics, in Polymer Gels: Synthesis and Characterization, ed. by M. K. Thakur, (Springer, 2018), pp. 127–140

    Google Scholar 

  73. A. Moschona, N. Plesu, G. Mezei, A.G. Thomas, K.D. Demadis, Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular size. Corros. Sci. 145, 135–150 (2018)

    Google Scholar 

  74. Z. Amjad, Investigations on the influence of phosphonates in dispersing iron oxide (rust) by polymeric additives for industrial water applications. Int. J. Corros. Scale Inhib. 3, 89–100 (2014)

    Google Scholar 

  75. E.N. Rizkalla, M.T.M. Zaki, I.M. Ismail, Metal chelates of phosphonate-containing ligands-V Stability of some 1-hydroxyethane-1,1-diphosphonic acid metal chelates. Talanta 27, 715–719 (1980)

    Google Scholar 

  76. M.M. Reddy, G.H. Nancollas, Calcite crystal growth inhibition by phosphonates. Desalination 12, 61–73 (1973)

    Google Scholar 

  77. R.M. Cigala, M. Cordaro, F. Crea, C. De Stefano, V. Fracassetti, M. Marchesi, D. Milea, S. Sammartano, Acid−base properties and alkali and alkaline earth metal complex formation in aqueous solution of diethylenetriamine -N,N,N′,N″,N″-pentakis(methylenephosphonic acid) obtained by an efficient synthetic procedure. Ind. Eng. Chem. Res. 53, 9544–−9553 (2014)

    Google Scholar 

  78. D. Drzyzga, J. Lipok, Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms. Environ. Sci. Pollut. Res. Int. 24, 24364–24375 (2017)

    Google Scholar 

  79. A. Obojska, B. Lejczak, M. Kubrak, Degradation of phosphonates by streptomycete isolates. Appl. Microbiol. Biotechnol. 51, 872–876 (1999)

    Google Scholar 

  80. D. Villemin, M.A. Didi, Aminomethylenephosphonic acids syntheses and applications (A review). Orient. J. Chem. 31, 1–12 (2015)

    Google Scholar 

  81. A. Spinthaki, J. Matheis, W. Hater, K.D. Demadis, Antiscalant-driven inhibition and stabilization of “magnesium silicate” under geothermal stresses: The role of magnesium−phosphonate coordination chemistry. Energy Fuels 32, 11749–11760 (2018)

    Google Scholar 

  82. K.D. Demadis, P. Lykoudis, Chemistry of organophosphonate scale growth inhibitors: 3. Physicochemical aspects of 2−phosphonobutane−1,2,4−tricarboxylate (PBTC) and its effect on CaCO3 crystal growth. Bioinorg. Chem. Appl. 3, 135–149 (2005)

    Google Scholar 

  83. M.F. Mady, A. Bagi, M.A. Kelland, Synthesis and evaluation of new bisphosphonates as inhibitors for oilfield carbonate and sulfate scale control. Energy Fuel 30, 9329–9338 (2016)

    Google Scholar 

  84. K.D. Demadis, Chemistry of organophosphonate scale growth inhibitors: 4. Stability of amino−tris−methylene phosphonate towards oxidizing biocides. Phosphorus Sulfur 181, 167–176 (2006)

    Google Scholar 

  85. E. Akyol, M. Öner, E. Barouda, K.D. Demadis, Systematic structural determinants of the effects of tetraphosphonates on gypsum crystallization. Cryst. Growth Des. 9, 5145–5154 (2009)

    Google Scholar 

  86. P. Zhang, C. Fan, H. Lu, A.T. Kan, M.B. Tomson, Synthesis of crystalline-phase silica-based calcium phosphonate nanomaterials and their transport in carbonate and sandstone porous media. Ind. Eng. Chem. Res. 50, 1819–1830 (2011)

    Google Scholar 

  87. J. Jiang, J. Zhao, Y. Xu, Molecular simulations and critical pH studies for the interactions between 2-phosphonobutane-1,2,4-tricarboxylic acid and calcite surfaces in circular cooling water systems. Des. Wat. Treat. 57, 2152–2158 (2016)

    Google Scholar 

  88. E. Shall, H. Rashad, M.M.A. Abdel-Aal, Effect of phosphonate additive on crystallization of gypsum in phosphoric and sulfuric acid medium. Crystal Res. Technol. 37, 1264–1273 (2002)

    Google Scholar 

  89. M. Xia, C. Chen, Probing the inhibitory mechanism of calcite precipitation by organic phosphonates in industrial water cooling system. Int. J. Environ. Sci. Develop. 6, 300–304 (2015)

    Google Scholar 

  90. M.F.B. Sousa, C.A. Bertran, New methodology based on static light scattering measurements for evaluation of inhibitors for in bulk CaCO3 crystallization. J. Colloid Interface Sci. 420, 57–64 (2014)

    Google Scholar 

  91. M.A. Kelland, Effect of various cations on the formation of calcium carbonate and barium sulfate scale with and without scale inhibitors. Ind. Eng. Chem. Res. 50, 5852–5861 (2011)

    Google Scholar 

  92. L.F. Greenlee, F. Testa, D.F. Lawler, B.D. Freeman, P. Moulin, The effect of antiscalant addition on calcium carbonate precipitation for a simplified synthetic brackish water reverse osmosis concentrate. Wat. Res. 44, 2957–2969 (2010)

    Google Scholar 

  93. Z. Amjad, P.G. Koutsoukos, Evaluation of maleic acid based polymers as scale inhibitors and dispersants for industrial water applications. Desalination 335, 55–63 (2014)

    Google Scholar 

  94. B. Senthilmurugan, B. Ghosh, S. Kundu, M. Haroun, B. Kameshwari, Maleic acid based scale inhibitors for calcium sulfate scale inhibition in high temperature application. J. Petr. Sci. Eng. 75, 189–195 (2010)

    Google Scholar 

  95. V.V. Annenkov, E.N. Danilovtseva, E.A. Filina, Y.V. Likhoshway, Interaction of silicic acid with poly(1-vinylimidazole). J. Polym. Sci. A 44, 820–827 (2006)

    Google Scholar 

  96. E. Neofotistou, K.D. Demadis, Silica scale inhibition by polyaminoamide STARBURST® dendrimers. Colloids Surf. A Physicochem. Eng. Asp. 242, 213–216 (2004)

    Google Scholar 

  97. K.D. Demadis, A structure/function study of polyaminoamide dendrimers as silica scale growth inhibitors. J. Chem. Technol. Biotechnol. 80, 630–640 (2005)

    Google Scholar 

  98. K.D. Demadis, E. Neofotistou, Synergistic effects of combinations of cationic polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica formation: A bioinspired approach. Chem. Mater. 19, 581–587 (2007)

    Google Scholar 

  99. A. Stathoulopoulou, K.D. Demadis, Enhancement of silicate solubility by use of “green” additives: Linking green chemistry and chemical water treatment. Desalination 224, 223–230 (2008)

    Google Scholar 

  100. K.D. Demadis, A. Stathoulopoulou, Novel, multifunctional, environmentally friendly additives for effective control of inorganic foulants in industrial water and process applications. Mater. Perform. 45, 40–44 (2006)

    Google Scholar 

  101. K.D. Demadis, A. Stathoulopoulou, Solubility enhancement of silicate with polyamine/polyammonium cationic macromolecules: Relevance to silica-laden process waters. Ind. Eng. Chem. Res. 45, 4436–4440 (2006)

    Google Scholar 

  102. A. Ketsetzi, A. Stathoulopoulou, K.D. Demadis, Being “green” in chemical water treatment technologies: Issues, challenges and developments. Desalination 223, 487–493 (2008)

    Google Scholar 

  103. K.D. Demadis, A. Tsistraki, A. Popa, G. Ilia, A. Visa, Promiscuous stabilisation behavior of silicic acid by cationic macromolecules: The case of phosphonium-grafted dicationic ethylene oxide bolaamphiphiles. RSC Adv. 2, 631–641 (2012)

    Google Scholar 

  104. K. Spinde, K. Pachis, I. Antonakaki, E. Brunner, K.D. Demadis, Influence of polyamines and related macromolecules on silicic acid polycondensation: Relevance to “soluble silicon pools”? Chem. Mater. 23, 4676–4687 (2011)

    Google Scholar 

  105. M. Preari, K. Spinde, J. Lazic, E. Brunner, K.D. Demadis, Bioinspired insights into silicic acid stabilization mechanisms: The dominant role of polyethylene glycol-induced hydrogen bonding. J. Am. Chem. Soc. 136, 4236–4244 (2014)

    Google Scholar 

  106. E. Neofotistou, K.D. Demadis, Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: Fundamentals and applications in desalination systems. Desalination 167, 257–272 (2004)

    Google Scholar 

  107. M.A. Quraishi, L.H. Farooqi, P.A. Saini, Investigation of some green compounds as corrosion and scale inhibitors for cooling systems. Corrosion 55, 493–497 (1999)

    Google Scholar 

  108. S.Q.A. Mahat, I.M. Saaid, Β. Lal, Green silica scale inhibitors for alkaline-surfactant-polymer flooding: A review. J. Petrol. Explor. Prod. Technol. 6, 379–385 (2016)

    Google Scholar 

  109. A. Spinthaki, C. Zerfass, H. Paulsen, S. Hobe, K.D. Demadis, Pleiotropic role of recombinant silaffin-like cationic polypeptide P5S3: Peptide-induced silicic acid stabilization, silica formation and inhibition of silica dissolution. Chem. Select 2, 6–17 (2017)

    Google Scholar 

  110. K.D. Demadis, A. Ketsetzi, K. Pachis, V.M. Ramos, Inhibitory effects of multicomponent, phosphonate-grafted, zwitter-ionic chitosan biomacromolecules on silicic acid condensation. Biomacromolecules 9, 3288–3293 (2008)

    Google Scholar 

  111. K.D. Demadis, K. Pachis, A. Ketsetzi, A. Stathoulopoulou, Bioinspired control of colloidal silica in vitro by dual polymeric assemblies of zwitterionic phosphomethylated chitosan and polycations or polyanions. Adv. Colloid Interf. Sci. 151, 33–48 (2009)

    Google Scholar 

  112. B. Akın, M. Öner, Y. Bayram, K.D. Demadis, Effects of carboxylate-modified, “green” inulin biopolymers on the crystal growth of calcium oxalate. Cryst. Growth Des. 8, 1997–2005 (2008)

    Google Scholar 

  113. K.D. Demadis, I. Léonard, Carboxymethylinulin “green” polymeric additives for control of calcium oxalate in industrial water and process applications. Mater. Perform. 50, 40–44 (2011)

    Google Scholar 

  114. K.D. Demadis, M. Preari, “Green” scale inhibitors in water treatment processes: The case of silica scale inhibition. Desalin. Water Treat. 55, 749–755 (2015)

    Google Scholar 

  115. K.D. Demadis, S. Brückner, E. Brunner, S. Paasch, I. Antonakaki, M. Casolaro, The intimate role of imidazole in the stabilization of slicic acid by a pH-responsive, histidine-grafted polyampholyte. Chem. Mater. 27, 6827–6836 (2015)

    Google Scholar 

  116. K.D. Demadis, M. Öner, Inhibitory effects of “green” additives on the crystal growth of sparingly soluble salts, in Green Chemistry Research Trends, ed. by J. T. Pearlman, (Nova Science Publishers, New York, 2009), pp. 265–287

    Google Scholar 

  117. A. Spinthaki, K.D. Demadis, Bioinspired “green” scale inhibitors for mitigation of silica scales, in Industrial Water Treatment: Trends, Challenges, and Solutions, ed. by Z. Amjad, T. Chen, (NACE Publications, 2017), pp. 71–86

    Google Scholar 

  118. K.D. Demadis, A. Ketsetzi, Degradation of water treatment chemical additives in the presence of oxidizing biocides: “Collateral damages” in industrial water systems. Sep. Sci. Technol. 42, 1639–1649 (2007)

    Google Scholar 

  119. W. El Malti, D. Laurencin, G. Guerrero, M.E. Smith, P.H. Mutin, Surface modification of calcium carbonate with phosphonic acids. J. Mater. Chem. 22, 1212–1218 (2012)

    Google Scholar 

  120. K.D. Demadis, G. Angeli, “Good scale”–“bad scale”. How metal–phosphonate materials contribute to corrosion inhibition, in Mineral Scales in Biological and Industrial Systems, (Taylor and Francis, New York, 2013), pp. 353–370

    Google Scholar 

  121. B. Moriarty, On-line monitoring of water treatment chemicals, in Mineral Scales and Deposits: Scientific and Technological Approaches, ed. by Z. Amjad, K. D. Demadis, (Elsevier, Amsterdam, 2015), pp. 737–745

    Google Scholar 

  122. M. Oshchepkov, K. Popov, Fluorescent markers in water treatment, in Desalination and Water Treatment, ed. by M. Eyvaz, (InTech Open, 2018), pp. 311–331

    Google Scholar 

  123. H. Wang, Y. Zhou, Q. Yao, S. Ma, W. Wu, W. Sun, Synthesis of fluorescent-tagged scale inhibitor and evaluation of its calcium carbonate precipitation performance. Desalination 340, 1–10 (2014)

    Google Scholar 

  124. M. Oshchepkov, S. Semen Kamagurov, S. Sergei Tkachenko, A. Ryabova, K. Popov, Insight into the mechanisms of scale inhibition: A case study of a task-specific fluorescent-tagged scale inhibitor location on gypsum crystals. ChemNanoMat 5, 586–592 (2019)

    Google Scholar 

  125. X. Li, D. Hasson, H. Shemer, Flow conditions affecting the induction period of CaSO4 scaling on RO membranes. Desalination 431, 119–125 (2018)

    Google Scholar 

  126. J. Fink, Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids (Elsevier, Amsterdam, 2015). 2015, and references therein. ISBN: 9780123838445

    Google Scholar 

  127. B. Raistrick, The influence of foreign ions on crystal growth from solution. 1. The stabilization of the supersaturation of calcium carbonate solutions by anions possessing O-P-O-P-O chains. Discuss. Faraday Soc. 5, 234–237 (1949)

    Google Scholar 

  128. T.A. Hoang, Mechanisms of scale formation, in Mineral Scales and Deposits: Scientific and Technological Approaches, ed. by Z. Amjad, K. D. Demadis, (Elsevier, Amsterdam, 2015), pp. 47–83

    Google Scholar 

  129. P. Zhang, A.T. Kan, M.B. Tomson, Oil field mineral scale control, in Mineral Scales and Deposits: Scientific and Technological Approaches, ed. by Z. Amjad, K. D. Demadis, (Elsevier, Amsterdam, 2015), pp. 603–617

    Google Scholar 

  130. S. Dobberschütz, M.R. Nielsen, K.K. Sand, R. Civioc, N. Bovet, S.L.S. Stipp, M.P. Andersson, The mechanisms of crystal growth inhibition by organic and inorganic inhibitors. Nat. Commun. 9, 1578 (2018)

    Google Scholar 

  131. Z. Amjad, D. Guyton, Biopolymers and synthetic polymers as iron oxide dispersants for industrial water applications. Mater. Perform. 51, 48–53 (2012)

    Google Scholar 

  132. Y. Liu, Y. Zhou, Q. Yao, W. Sun, Evaluating the performance of PEG-based scale inhibition and dispersion agent in cooling water systems. Desalin. Water Treat. 56, 1309–1320 (2015)

    Google Scholar 

  133. I. Nishida, Y. Okaue, T. Yokoyama, Effects of adsorption conformation on the dispersion of aluminum hydroxide particles by multifunctional polyelectrolytes. Langmuir 26, 1663–11669 (2010)

    Google Scholar 

  134. X. Zhou, Y. Sun, Y. Wang, Inhibition and dispersion of polyepoxysuccinate as a scale inhibitor. J. Environ. Sci. 23, S159–S161 (2011)

    Google Scholar 

  135. Y. Xu, L.L. Zhao, L.N. Wang, S.Y. Xu, Y.C. Cui, Synthesis of polyaspartic acid–melamine grafted copolymer and evaluation of its scale inhibition performance and dispersion capacity for ferric oxide. Desalination 286, 285–289 (2012)

    Google Scholar 

  136. Q. Luo, Stabilization of alumina polishing slurries using phosphonate dispersants. Ind. Eng. Chem. Res. 39, 3249–3254 (2000)

    Google Scholar 

  137. A.L. Penard, F. Rossignol, H.S. Nagaraja, C. Pagnoux, T. Chartier, Dispersion of alpha-alumina ultrafine powders using 2-phosphonobutane-1,2,4-tricarboxylic acid for the implementation of a DCC process. J. Europ. Ceram. Soc. 25, 1109–1118 (2005)

    Google Scholar 

  138. K.D. Demadis, A. Ketsetzi, E.-M. Sarigiannidou, Catalytic effect of magnesium ions on silicic acid polycondensation and inhibition strategies based on chelation. Ind. Eng. Chem. Res. 51, 9032–9040 (2012)

    Google Scholar 

  139. A. Putnis, J.L. Junta-Rosso, M.F. Hochella, Dissolution of barite by a chelating ligand: An atomic force microscopy study. Geochim. Cosmochim. Acta 59, 4623–4632 (1995)

    Google Scholar 

  140. K.D. Demadis, E. Mavredaki, Green additives to enhance silica dissolution during water treatment. Environ. Chem. Lett. 3, 127–131 (2005)

    Google Scholar 

  141. K.D. Demadis, E. Mavredaki, M. Somara, Additive-driven dissolution enhancement of colloidal silica. 2. Environmentally friendly additives. Ind. Eng. Chem. Res 50, 13866–13876 (2011)

    Google Scholar 

  142. T. Knepper, Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trends Anal. Chem. 22, 708–724 (2003)

    Google Scholar 

  143. K.D. Demadis, B. Yang, P.R. Young, D.L. Kouznetsov, D.G. Kelley, Rational development of new cooling water chemical treatment programs for scale and microbial control, in Advances in Crystal Growth Inhibition Technologies, ed. by Z. Amjad, (Plenum Publishing Corporation, New York, 2000), pp. 215–234

    Google Scholar 

  144. Z. Amjad, R.W. Zuhl, J.F. Zibrida, Factors Influencing the Precipitation of Calcium-Inhibitor Salts in Industrial Water Systems. Association of Water Technologies, Inc. Annual Convention, Phoenix, September 17–20 2003

    Google Scholar 

  145. Z. Amjad, R.W. Zuhl, Influence of cationic polymers on the performance of anionic polymers as precipitation inhibitors for calcium phosphonates. Phosphorus Res. Bull. 13, 59–65 (2002)

    Google Scholar 

  146. V. Tantayakom, H.S. Fogler, P. Charoensirithavorn, S. Chavadej, Kinetic study of scale inhibitor precipitation in squeeze treatment. Cryst. Growth Des. 5, 329–335 (2005)

    Google Scholar 

  147. A.T. Kan, J.E. Oddo, M.B. Tomson, Formation of two calcium diethylenetriaminepentakis(methylenephosphonic acid) precipitates and their physical chemical properties. Langmuir 10, 1450–1455 (1994)

    Google Scholar 

  148. R. Pairat, C. Sumeath, F.H. Browning, H.S. Fogler, Precipitation and dissolution of calcium-ATMP precipitates for the inhibition of scale formation in porous media. Langmuir 13, 1791–1798 (1997)

    Google Scholar 

  149. K.M. Wiencek, J.S. Chapman, Water Treatment Biocides: How Do they Work and why Should you Care? Corrosion 99, NACE – 99308, NACE International, 25–30 April 1999, San Antonio

    Google Scholar 

  150. R.D. Bartholomew, Bromine-based biocides for cooling water systems: A literature review. International Water Conference, Paper no. 74, 1998, p. 523

    Google Scholar 

  151. M. Vaska, W. Go, Microbial control. Evaluation of alternatives to gaseous chlorine for cooling water, Industrial Water Treatment, March/April, 39 1993

    Google Scholar 

  152. Z. Amjad, R.W. Zuhl, J.F. Zibrida, The effect of biocides on deposit control polymer performance. Association of Water Technologies, Inc. 2000 Annual Convention, Oct 31 – Nov 4, 2000, Honolulu

    Google Scholar 

  153. K.D. Demadis, S.D. Katarachia, M. Koutmos, Crystal growth and characterization of zinc–amino–tris(methylenephosphonate) organic–inorganic hybrid networks and their inhibiting effect on metallic corrosion. Inorg. Chem. Commun. 8, 254–258 (2005)

    Google Scholar 

  154. K.D. Demadis, E. Barouda, R.G. Raptis, H. Zhao, Metal tetraphosphonate “wires” and their corrosion inhibiting passive films. Inorg. Chem. 48, 819–821 (2009)

    Google Scholar 

  155. M. Papadaki, K.D. Demadis, Structural mapping of hybrid metal phosphonate corrosion inhibiting thin films. Comment Inorg. Chem. 30, 89–118 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos D. Demadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spinthaki, A., Demadis, K.D. (2020). Chemical Methods for Scaling Control. In: Saji, V.S., Meroufel, A.A., Sorour, A.A. (eds) Corrosion and Fouling Control in Desalination Industry. Springer, Cham. https://doi.org/10.1007/978-3-030-34284-5_15

Download citation

Publish with us

Policies and ethics