Skip to main content

Novel Physics Opportunities at the HESR-Collider with PANDA at FAIR

  • Chapter
  • First Online:
Discoveries at the Frontiers of Science

Abstract

Exciting new scientific opportunities are presented for the PANDA detector at the High Energy Storage Ring in the redefined \(\bar{\text {p}} \text {p}(A)\) collider mode, HESR-C, at the Facility for Antiproton and Ion Research (FAIR) in Europe. The high luminosity, \(L \sim 10^{31}\) cm\(^{-2}\) s\(^{-1}\), and a wide range of intermediate and high energies, \(\sqrt{s_{\text {NN}}}\) up to 30 GeV for \(\bar{\text {p}} \text {p}(A)\) collisions will allow to explore a wide range of exciting topics in QCD, including the study of the production of excited open charm and bottom states, nuclear bound states containing heavy (anti)quarks, the interplay of hard and soft physics in the dilepton production, and the exploration of the regime where gluons—but not quarks—experience strong interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.E. Augustin et al. (SLAC-SP-017 Collaboration), Discovery of a narrow resonance in \({{\rm e}^+}{{\rm e}^{-}}\) annihilation. Phys. Rev. Lett. 33, 1406 (1974). https://doi.org/10.1103/PhysRevLett.33.1406

  2. J.J. Aubert et al. (E598 Collaboration), Experimental observation of a heavy particle. J, Phys. Rev. Lett. 33, 1404 (1974). https://doi.org/10.1103/PhysRevLett.33.1404

  3. S.W. Herb et al. Observation of a Dimuon resonance at 9.5 GeV in 400 GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 252 (1977). https://doi.org/10.1103/PhysRevLett.39.252

  4. H. Stöcker, T. Stöhlker, C. Sturm, FAIR - cosmic matter in the laboratory, J. Phys. Conf. Ser. 623, 012026 (2015). https://doi.org/10.1088/1742-6596/623/1/012026

  5. V. Barone et al. (PAX Collaboration), Antiproton-proton scattering experiments with polarization (2005), arXiv: hep-ex/0505054

  6. PAX Collaboration, Technical proposal for antiproton-proton scattering experiments with polarization. Technical report, Forschungszentrum Jülich (2006), http://collaborations.fz-juelich.de/ikp/pax/public_files/proposals/techproposal20060125.pdf

  7. A. Lehrach, Accelerator configuration for polarized proton-antiproton physics at FAIR. AIP Conf. Proc. 915, 147 (2007)

    Article  ADS  Google Scholar 

  8. I.N. Mishustin, L.M. Satarov, J. Schaffner, H. Stöcker, W. Greiner, Baryon anti-baryon pair production in strong meson fields. J. Phys. G 19, 1303 (1993). https://doi.org/10.1088/0954-3899/19/9/009

  9. A.B. Larionov, I.N. Mishustin, L.M. Satarov, W. Greiner, Dynamical simulation of bound antiproton-nuclear systems and observable signals of cold nuclear compression. Phys. Rev. C 78, 014604 (2008). https://doi.org/10.1103/PhysRevC.78.014604

  10. F. Bradamante, I. Koop, A. Otboev, V. Parkhomchuk, V. Reva, P. Shatunov, Y. Shatunov, Conceptual design for a polarized proton-antiproton collider facility at GSI (2005), arXiv: physics/0511252

  11. A. Lehrach, O. Boine-Frankenheim, F. Hinterberger, R. Maier, D. Prasuhn, Beam performance and luminosity limitations in the high-energy storage ring (HESR). Nucl. Instrum. Methods A 561, 289 (2006). https://doi.org/10.1016/j.nima.2006.01.017

  12. P. Beller, K. Beckert, C. Dimopoulou, A. Dolinsky, F. Nolden, M. Steck, J. Yang, Layout of an accumulator and decelerator ring for FAIR. Conf. Proc. C 060626, 199 (2006), http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/MOPCH074.PDF

  13. V.V. Parkhomchuk, V.B. Reva, A.N. Skrinsky, V.A. Vostrikov, K. Beckert, P. Beller, A. Dolinskii, B. Franzke, F. Nolden, M. Steck, An electron cooling system for the proposed HESR antiproton storage ring, in 9th European Particle Accelerator Conference (EPAC 2004) Lucerne, Switzerland, 5–9 July 2004 (2004), http://accelconf.web.cern.ch/AccelConf/e04/PAPERS/WEPLT056.PDF

  14. D. Reistad et al., Status of the HESR electron cooler design work. Conf. Proc. C 060626, 1648 (2006)

    Google Scholar 

  15. V. Kamerdzhiev et al., 2 MeV electron cooler for COSY and HESR – first results, in Proceedings, 5th International Particle Accelerator Conference (IPAC 2014): Dresden, Germany, MOPRI070, 15-20 June 2014 (2014), http://jacow.org/IPAC2014/papers/mopri070.pdf

  16. M. Karliner, Heavy exotic quarkonia and doubly heavy baryons. EPJ Web Conf. 96, 01019 (2015)

    Article  Google Scholar 

  17. M. Cacciari, P. Nason, C. Oleari, A study of heavy flavored meson fragmentation functions in \({{\rm e}^{+}} {{\rm e}^{-}}\) annihilation. JHEP 04, 006 (2006). https://doi.org/10.1088/1126-6708/2006/04/006

  18. M. Beneke, A.P. Chapovsky, M. Diehl, T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power. Nucl. Phys. B 643, 431 (2002), arXiv: hep-ph/0206152, https://doi.org/10.1016/S0550-3213(02)00687-9

  19. M. Cacciari, R. Vogt, Priv. Commun.

    Google Scholar 

  20. M. Tanabashi et al. (Particle Data Group), The review of particle physics. Phys. Rev. D 98, 030001 (2018), http://pdg.lbl.gov/

  21. G.D. Alkhazov, S.L. Belostotsky, A.A. Vorobev, Scattering of 1-GeV protons on nuclei. Phys. Rep. 42, 89 (1978). https://doi.org/10.1016/0370-1573(78)90083-2

  22. A.B. Larionov, H. Lenske, Elastic scattering, polarization and absorption of relativistic antiprotons on nuclei. Nucl. Phys. A 957, 450 (2017). https://doi.org/10.1016/j.nuclphysa.2016.10.006

  23. I.V. Moskalenko, A.W. Strong, J.F. Ormes, M.S. Potgieter, Secondary anti-protons and propagation of cosmic rays in the galaxy and heliosphere. Astrophys. J. 565, 280 (2002). https://doi.org/10.1086/324402

  24. A.A. Tyapkin, A possible way of establishing the existence of charmed particles. Sov. J. Nucl. Phys. 22, 89 (1976)

    Google Scholar 

  25. C.B. Dover, S.H. Kahana, Possibility of charmed hypernuclei. Phys. Rev. Lett. 39, 1506 (1977). https://doi.org/10.1103/PhysRevLett.39.1506

  26. K. Tsushima, F.C. Khanna, Lambda(c)+ and Lambda(b) hypernuclei. Phys. Rev. C 67, 015211 (2003). https://doi.org/10.1103/PhysRevC.67.015211

  27. A.B. Larionov, H. Lenske, Distillation of scalar exchange by coherent hypernucleus production in antiproton-nucleus collisions. Phys. Lett. B 773, 470 (2017). https://doi.org/10.1016/j.physletb.2017.09.007

  28. R. Shyam, K. Tsushima, Production of \(\Lambda _c^+\) hypernuclei in antiproton - nucleus collisions. Phys. Lett. B 770, 236 (2017). https://doi.org/10.1016/j.physletb.2017.04.057

  29. L. Gerland, L. Frankfurt, M. Strikman, H. Stöcker, W. Greiner, J/\(\psi \) production, \(\chi \) polarization and color fluctuations. Phys. Rev. Lett. 81, 762 (1998), arXiv:nucl-th/9803034, https://doi.org/10.1103/PhysRevLett.81.762

  30. L.L. Frankfurt, M.I. Strikman, Point-like configurations in hadrons and nuclei and deep inelastic reactions with leptons: EMC and EMC-like effects. Nucl. Phys. B 250, 143 (1985). https://doi.org/10.1016/0550-3213(85)90477-8

  31. M. Alvioli, B.A. Cole, L. Frankfurt, D.V. Perepelitsa, M. Strikman, Evidence for \(x\)-dependent proton color fluctuations in pA collisions at the CERN large hadron collider. Phys. Rev. C 93, 011902 (2016). https://doi.org/10.1103/PhysRevC.93.011902

  32. M. Alvioli, L. Frankfurt, D. Perepelitsa, M. Strikman, Global analysis of color fluctuation effects in proton- and deuteron-nucleus collisions at RHIC and the LHC (2017), arXiv:1709.04993

  33. L. Van Hove, S. Pokorski, High-energy hadron-hadron collisions and internal hadron structure. Nucl. Phys. B 86, 243 (1975). https://doi.org/10.1016/0550-3213(75)90443-5

  34. S. Raha, Dilepton, diphoton and photon production in preequilibrium. Phys. Scr. T32, 180 (1990). https://doi.org/10.1088/0031-8949/1990/T32/030

  35. E.V. Shuryak, Two stage equilibration in high-energy heavy ion collisions. Phys. Rev. Lett. 68, 3270 (1992). https://doi.org/10.1103/PhysRevLett.68.3270

  36. J. Alam, B. Sinha, S. Raha, Successive equilibration in quark - gluon plasma. Phys. Rev. Lett. 73, 1895 (1994)

    Article  ADS  Google Scholar 

  37. T.S. Biro, E. van Doorn, B. Muller, M.H. Thoma, X.N. Wang, Parton equilibration in relativistic heavy ion collisions. Phys. Rev. C 48, 1275 (1993). https://doi.org/10.1103/PhysRevC.48.1275

  38. D.M. Elliott, D.H. Rischke, Chemical equilibration of quarks and gluons at RHIC and LHC energies. Nucl. Phys. A 671, 583 (2000). https://doi.org/10.1016/S0375-9474(99)00840-4

  39. Z. Xu, C. Greiner, Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade. Phys. Rev. C 71, 064901 (2005). https://doi.org/10.1103/PhysRevC.71.064901

  40. H. Stöcker et al., Glueballs amass at RHIC and LHC colliders! - the early quarkless 1st order phase transition at \(T=270\) MeV - from pure Yang-Mills glue plasma to GlueBall-Hagedorn states. J. Phys. G 43, 015105 (2016). https://doi.org/10.1088/0954-3899/43/1/015105

  41. H. Stöcker et al., Under-saturation of quarks at early stages of relativistic nuclear collisions: the hot glue initial scenario and its observable signatures. Astron. Nachr. 336 (2015). https://doi.org/10.1002/asna.201512252

  42. S. Borsanyi, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Precision SU(3) lattice thermodynamics for a large temperature range. JHEP 07, 056 (2012). 1204.6184, https://doi.org/10.1007/JHEP07(2012)056

  43. M. Beitel, C. Greiner, H. Stöcker, Fast dynamical evolution of a hadron resonance gas via Hagedorn states. Phys. Rev. C 94, 021902 (2016). https://doi.org/10.1103/PhysRevC.94.021902

  44. V. Vovchenko, M.I. Gorenstein, L.M. Satarov, I.N. Mishustin, L.P. Csernai, I. Kisel, H. Stöcker, Entropy production in chemically nonequilibrium quark-gluon plasma created in central Pb+Pb collisions at energies available at the CERN large Hadron collider. Phys. Rev. C 93, 014906 (2016). https://doi.org/10.1103/PhysRevC.93.014906

  45. V. Vovchenko, I.A. Karpenko, M.I. Gorenstein, L.M. Satarov, I.N. Mishustin, B. Kämpfer, H. Stöcker, Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN large Hadron collider. Phys. Rev. C 94, 024906 (2016). https://doi.org/10.1103/PhysRevC.94.024906

  46. V. Vovchenko, L.-G. Pang, H. Niemi, I.A. Karpenko, M.I. Gorenstein, L.M. Satarov, I.N. Mishustin, B. Kämpfer, H. Stöcker, Hydrodynamic modeling of a pure-glue initial scenario in high-energy hadron and heavy-ion collisions. PoS BORMIO2016, 039 (2016)

    Google Scholar 

  47. I. Karpenko, P. Huovinen, M. Bleicher, A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions. Comput. Phys. Commun. 185, 3016 (2014). https://doi.org/10.1016/j.cpc.2014.07.010

  48. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99 (2014). https://doi.org/10.1016/j.physletb.2014.01.007

  49. V. Vovchenko, Quantum statistical van der Waals equation and its QCD applications. Ph.D. thesis, Goethe University Frankfurt (2018)

    Google Scholar 

  50. R. Rapp, J. Wambach, Low mass dileptons at the CERN SPS: evidence for chiral restoration? Eur. Phys. J. A 6, 415 (1999). https://doi.org/10.1007/s100500050364

  51. R. Rapp, J. Wambach, H. van Hees, The chiral restoration transition of QCD and low mass dileptons. Landolt-Börnstein 23, 134 (2010). https://doi.org/10.1007/978-3-642-01539-7_6

  52. S. Endres, H. van Hees, M. Bleicher, Photon and dilepton production at the facility for proton and anti-proton research and beam-energy scan at the relativistic heavy-ion collider using coarse-grained microscopic transport simulations. Phys. Rev. C 93, 054901 (2016). https://doi.org/10.1103/PhysRevC.93.054901

  53. T. Galatyuk, P.M. Hohler, R. Rapp, F. Seck, J. Stroth, Thermal dileptons from coarse-grained transport as fireball probes at SIS energies. Eur. Phys. J. A 52, 131 (2016). https://doi.org/10.1140/epja/i2016-16131-1

  54. J. Staudenmaier, J. Weil, V. Steinberg, S. Endres, H. Petersen, Dilepton production and resonance properties within a new hadronic transport approach in the context of the GSI-HADES experimental data (2017), arXiv: 1711.10297 [nucl-th]

  55. O. Linnyk, E.L. Bratkovskaya, W. Cassing, Effective QCD and transport description of dilepton and photon production in heavy-ion collisions and elementary processes. Prog. Part. Nucl. Phys. 87, 50 (2016). https://doi.org/10.1016/j.ppnp.2015.12.003

  56. M. Glück, E. Reya, A. Vogt, Dynamical parton distributions of the proton and small x physics. Z. Phys. C 67, 433 (1995). https://doi.org/10.1007/BF01624586

  57. M. Gluck, E. Reya, A. Vogt, Pionic parton distributions. Z. Phys. C 53, 651 (1992). https://doi.org/10.1007/BF01559743

  58. C. Spieles, L. Gerland, N. Hammon, M. Bleicher, S.A. Bass, H. Stöcker, W. Greiner, C. Lourenco, R. Vogt, A microscopic calculation of secondary Drell-Yan production in heavy ion collisions. Eur. Phys. J. C 5, 349 (1998). https://doi.org/10.1007/s100520050279

  59. C. Spieles, L. Gerland, N. Hammon, M. Bleicher, S.A. Bass, H. Stöcker, W. Greiner, C. Lourenco, R. Vogt, Intermediate mass dileptons from secondary Drell-Yan processes. Nucl. Phys. A 638, 507 (1998). https://doi.org/10.1016/S0375-9474(98)00345-5

  60. R. Angeles-Martinez et al., Transverse momentum dependent (TMD) parton distribution functions: status and prospects. Acta Phys. Polon. B 46, 2501 (2015). https://doi.org/10.5506/APhysPolB.46.2501

  61. E. Anassontzis et al., High mass dimuon production in \(\bar{p} n\) and \(\pi ^- n\) interactions at 125-GeV/c. Phys. Rev. D 38, 1377 (1988). https://doi.org/10.1103/PhysRevD.38.1377

  62. F. Eichstaedt, S. Leupold, K. Gallmeister, H. van Hees, U. Mosel, Description of fully differential Drell-Yan pair production. PoS BORMIO2011, 042 (2011), arXiv: 1108.5287 [hep-ph]

  63. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). https://doi.org/10.1140/epjc/s10052-009-1072-5

  64. J.C. Webb et al. (NuSea Collaboration), Absolute Drell-Yan dimuon cross-sections in 800 GeV/\(c\) pp and pd collisions (2003), arXiv: hep-ex/0302019

  65. J.C. Webb, Measurement of continuum dimuon production in 800 GeV/\(c\) proton nucleon collisions. Ph.D. thesis, New Mexico State U. (2003), arXiv: hep-ex/0301031, https://doi.org/10.2172/1155678

  66. P.L. McGaughey et al. (E772 Collaboration), Cross-sections for the production of high mass muon pairs from 800-GeV proton bombardment of H-2. Phys. Rev. D 50, 3038 (1994), [Erratum: Phys. Rev. D 60, 119903 (1999)]. https://doi.org/10.1103/PhysRevD.50.3038, https://doi.org/10.1103/PhysRevD.60.119903

  67. G. Moreno et al., Dimuon production in proton - copper collisions at \(\sqrt{s}\) = 38.8 GeV. Phys. Rev. D 43, 2815 (1991). https://doi.org/10.1103/PhysRevD.43.2815

  68. A.S. Ito et al., Measurement of the continuum of dimuons produced in high-energy proton - nucleus collisions. Phys. Rev. D 23, 604 (1981). https://doi.org/10.1103/PhysRevD.23.604

  69. S.R. Smith et al., Experimental test of the Drell-Yan model in \(p W \rightarrow \mu ^+ \mu ^- X\). Phys. Rev. Lett. 46, 1607 (1981). https://doi.org/10.1103/PhysRevLett.46.1607

  70. O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, et al., Transport-theoretical description of nuclear reactions. Phys. Rep. 512, 1 (2012). https://doi.org/10.1016/j.physrep.2011.12.001

  71. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Radiative energy loss and p(T) broadening of high-energy partons in nuclei. Nucl. Phys. B 484, 265 (1997). https://doi.org/10.1016/S0550-3213(96)00581-0

Download references

Acknowledgements

We thank M. Cacciari and R. Vogt for discussions on charm and beauty production in \(\bar{\text {p}} \text {p}\) scattering. Research of L.F. and M.S. was supported by the US Department of Energy Office of Science, Office of Nuclear Physics under Award No. DE-FG02-93ER40771. A.L. acknowledges partial financial support by Helmholtz International Center (HIC) for FAIR. H.v.H. acknowledges the support from Frankfurt Institute for Advanced Studies (FIAS). H.St. acknowledges the support through the Judah M. Eisenberg Laureatus Chair by Goethe University and the Walter Greiner Gesellschaft, Frankfurt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Frankfurt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frankfurt, L. et al. (2020). Novel Physics Opportunities at the HESR-Collider with PANDA at FAIR. In: Kirsch, J., Schramm, S., Steinheimer-Froschauer, J., Stöcker, H. (eds) Discoveries at the Frontiers of Science. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-030-34234-0_4

Download citation

Publish with us

Policies and ethics