Skip to main content

Power Flows in Complex Renewable Energy Networks

  • Chapter
  • First Online:
  • 414 Accesses

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

Abstract

The transition towards a sustainable, clean energy infrastructure is strongly dependent on the efficient integration of the fluctuating renewable power generation from wind and solar. With a focus on power flows, in this contribution we review complex renewable energy networks as a weather-data driven modelling approach to a highly renewable future electricity system. The benefit of cross-border transmission between the European countries in such a scenario is discussed, taking into account the role of spatial coarse-graining for the modelling results. Flow allocation methods are presented as a tool set to analyse the spatio-temporal flow patterns and to allocate both transmission and generation capacity costs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. European Commission. A policy framework for climate and energy in the period from 2020 to 2030 (2014)

    Google Scholar 

  2. H.-M. Henning, A. Palzer, A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies. Part I: methodology. Renew. Sustain. Energy Rev. 30, 1003–1018 (2014)

    Google Scholar 

  3. Y. Scholz, Renewable energy based electricity supply at low costs: development of the REMix model and application for Europe. Ph.D. thesis, University of Stuttgart (2012)

    Google Scholar 

  4. F.U. Leuthold, H. Weigt, C. von Hirschhausen, A large-scale spatial optimization model of the european electricity market. Netw. Spat. Econ. 12(1), 75–107 (2012)

    Article  MathSciNet  Google Scholar 

  5. S. Pfenninger, A. Hawkes, J. Keirstead, Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 33, 74–86 (2014)

    Article  Google Scholar 

  6. T. Brown, J. Hösch, D. Schlachtberger, PyPSA: python for power system analysis (2017), arXiv:1707.09913 [physics]

  7. D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger, Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 35(11), 2483–2489 (2010)

    Article  Google Scholar 

  8. D. Heide, M. Greiner, L. von Bremen, C. Hoffmann, Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation. Renew. Energy 36(9), 2515–2523 (2011)

    Article  Google Scholar 

  9. T.V. Jensen, M. Greiner, Emergence of a phase transition for the required amount of storage in highly renewable electricity systems. Eur. Phys. J. Spec. Top. 223(12), 2475–2481 (2014)

    Article  Google Scholar 

  10. R.A. Rodriguez, S. Becker, G.B. Andresen, D. Heide, M. Greiner, Transmission needs across a fully renewable European power system. Renew. Energy 63, 467–476 (2014)

    Article  Google Scholar 

  11. S. Becker, R.A. Rodriguez, G.B. Andresen, S. Schramm, M. Greiner, Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply. Energy 64, 404–418 (2014)

    Article  Google Scholar 

  12. D. Schlachtberger, S. Becker, S. Schramm, M. Greiner, Backup flexibility classes in emerging large-scale renewable electricity systems. Energy Convers. Manag. 125, 336–346 (2016)

    Article  Google Scholar 

  13. M. Raunbak, T. Zeyer, K. Zhu, M. Greiner, Principal mismatch patterns across a simplified highly renewable european electricity network. Energies 10(12) (2017)

    Google Scholar 

  14. E.H. Eriksen, L.J. Schwenk-Nebbe, B. Tranberg, T. Brown, M. Greiner, Optimal heterogeneity in a simplified highly renewable European electricity system. Energy 133, 913–928 (2017)

    Article  Google Scholar 

  15. D. Schlachtberger, T. Brown, S. Schramm, M. Greiner, The benefits of cooperation in a highly renewable European electricity network. Energy 134, 469–481 (2017)

    Article  Google Scholar 

  16. G.B. Andresen, A.A. Søndergaard, M. Greiner, Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis. Energy 93, 1074–1088 (2015)

    Article  Google Scholar 

  17. R.A. Rodriguez, M. Dahl, S. Becker, M. Greiner, Localized vs. synchronized exports across a highly renewable pan-European transmission network. Energy, Sustain. Soc. 5, 21 (2015)

    Google Scholar 

  18. S. Becker, B.A. Frew, G.B. Andresen, M.Z. Jacobson, S. Schramm, M. Greiner, Renewable build-up pathways for the US: generation costs are not system costs. Energy 81, 437–445 (2015)

    Article  Google Scholar 

  19. S. Becker, B.A. Frew, G.B. Andresen, T. Zeyer, S. Schramm, M. Greiner, M.Z. Jacobson, Features of a fully renewable US electricity system: optimized mixes of wind and solar PV and transmission grid extensions. Energy 72, 443–458 (2014)

    Article  Google Scholar 

  20. M. Dahl, R.A. Rodriguez, A.A. Søndergaard, T. Zeyer, G.B. Andresen, M. Greiner, Infrastructure estimates for a highly renewable global electricity grid, New Horizons in Fundamental Physics, FIAS Interdisciplinary Science Series (Springer, Cham, 2017), pp. 333–356

    Chapter  Google Scholar 

  21. A.J. Wood, B.F. Wollenberg, P. Generation, Operation, and Control (Wiley, New York, 2012)

    Google Scholar 

  22. K. Purchala, L. Meeus, D. Van Dommelen, R. Belmans. Usefulness of DC power flow for active power flow analysis, in IEEE Power Engineering Society General Meeting, vol. 1 (2005), pp. 454–459

    Google Scholar 

  23. ACER and CEER. Annual report on the results of monitoring the internal electricity and gas markets in 2016. Technical report (2017)

    Google Scholar 

  24. J. Hörsch, T. Brown, The role of spatial scale in joint optimisations of generation and transmission for European highly renewable scenarios, in 14th International Conference on the European Energy Market (EEM), June 2017

    Google Scholar 

  25. M. Schäfer, S. Bugge Siggaard, Kun Zhu, C. Risager Poulsen, M. Greiner, Scaling of transmission capacities in coarse-grained renewable electricity networks. EPL (Europhys. Lett.) 119(3), 38004 (2017)

    Google Scholar 

  26. T. Brown, Transmission network loading in Europe with high shares of renewables. IET Renew. Power Gener. 9(1), 57–65 (2015)

    Article  Google Scholar 

  27. B. Tranberg, A.B. Thomsen, R.A. Rodriguez, G.B. Andresen, M. Schäfer, M. Greiner, Power flow tracing in a simplified highly renewable European electricity network. New J. Phys. 17(10), 105002 (2015)

    Article  ADS  Google Scholar 

  28. M. Schäfer, S. Hempel, J. Hörsch, B. Tranberg, S. Schramm, M. Greiner, Power flow tracing in complex networks, New Horizons in Fundamental Physics, FIAS Interdisciplinary Science Series (Springer, Cham, 2017), pp. 357–373

    Chapter  Google Scholar 

  29. M. Schäfer, B. Tranberg, S. Hempel, S. Schramm, M. Greiner, Decompositions of injection patterns for nodal flow allocation in renewable electricity networks. Eur. Phys. J. B 90(8), 144 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. A.J. Conejo, J.M. Arroyo, N. Alguacil, A.L. Guijarro, Transmission loss allocation: a comparison of different practical algorithms. IEEE Trans. Power Syst. 17(3), 571–576 (2002)

    Article  ADS  Google Scholar 

  31. L.O. Camacho, I.J. Pérez-Arriaga, An assessment of inter-TSO compensation algorithms in the internal electricity market of the european union. Int. J. Electr. Power Energy Syst. 29(10), 699–712 (2007)

    Article  Google Scholar 

  32. J. Bialek, Tracing the flow of electricity. Transm. Distrib. IEE Proc. - Gener. 143(4), 313–320 (1996)

    Article  Google Scholar 

  33. D. Kirschen, R. Allan, G. Strbac, Contributions of individual generators to loads and flows. IEEE Trans. Power Syst. 12(1), 52–60 (1997)

    Article  ADS  Google Scholar 

  34. J. Hörsch, M. Schäfer, S. Becker, S. Schramm, M. Greiner, Flow tracing as a tool set for the analysis of networked large-scale renewable electricity systems. Int. J. Electr. Power Energy Syst. 96, 390–397 (2018)

    Article  Google Scholar 

  35. M. Schäfer, L.J. Schwenk-Nebbe, J. Hörsch, B. Tranberg, M. Greiner, Allocation of nodal costs in heterogeneous highly renewable European electricity networks, in 14th International Conference on the European Energy Market (EEM) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schäfer, M., Tranberg, B., Greiner, M. (2020). Power Flows in Complex Renewable Energy Networks. In: Kirsch, J., Schramm, S., Steinheimer-Froschauer, J., Stöcker, H. (eds) Discoveries at the Frontiers of Science. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-030-34234-0_17

Download citation

Publish with us

Policies and ethics