Skip to main content

High-Resolution Experiments with Exotic Nuclei and Mesic Atoms

  • Chapter
  • First Online:
  • 396 Accesses

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

Abstract

Pioneering heavy-ion research and the limits of stability of atoms and nuclei were central research topics of Walter Greiner. His ideas and directions have inspired and determined the experimental efforts to design novel separators and high-resolution spectrometers to produce and study the most exotic nuclei. This leads directly to the discovery of new nuclides, new decay modes and shapes, and unexspected shell effects near the driplines. Already in his early studies, Walter Greiner investigated mesic atoms which are still of basic interests to understand the strong interaction of matter and the mass modification of bound mesons. The existence of deeply-bound pionic states in heavy atoms was an important question in the Greiner School too. It was answered with a discovery experiment with the fragment separator FRS. In this article, we review characteristic experimental results inspired by the far-reaching ideas of Walter and his colleagues measured with the FRS at GSI. New experimental perspectives with the Super-FRS will also be adressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Angert, C. Schmelzer, Kerntechnik 19(2), 57 (1977)

    Google Scholar 

  2. K. Blasche, B. Franczak, in Proceedings of 3rd European Particle Accelerator Conference (Berlin, 1992), p. 9

    Google Scholar 

  3. G. Münzenberg, H. Geissel, C. Scheidenberger contribution to this book

    Google Scholar 

  4. H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)

    Article  ADS  Google Scholar 

  5. H. Geissel, G. Münzenberg, C. Scheidenberger, FIAS Interdisciplinary Science Series ed. by W. Greiner (Springer, Switzerland, 2017)

    Google Scholar 

  6. H. Geissel et al., Nucl. Instrum. Methods B 204, 71 (2003)

    Article  ADS  Google Scholar 

  7. G.D. Westfall et al., Phys. Rev. Lett. 43, 1859 (1979)

    Article  ADS  Google Scholar 

  8. T.J.M. Symons et al., Phys. Rev. Lett. 42, 40 (1979)

    Article  ADS  Google Scholar 

  9. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. B 160, 380 (1985)

    Google Scholar 

  10. B. Franzke, Nucl. Instrum. Methods B 24(25), 18 (1987)

    Article  ADS  Google Scholar 

  11. P. Kienle, Future accelerators and experimental facilities at GSI, report GSI-84-18 (1984). ISSN:0171-4546

    Google Scholar 

  12. C. Scheidenberger et al., Phys. Rev. Lett. 73, 50 (1994)

    Article  ADS  Google Scholar 

  13. C. Scheidenberger et al., Phys. Rev. Lett. 77, 3987 (1996)

    Article  ADS  Google Scholar 

  14. H. Weick et al., Phys. Rev. Lett. 85, 2725 (2000)

    Article  ADS  Google Scholar 

  15. T. Schwab, Ph.D. thesis, JLU Gießen, GSI report GSI-91-10 (1991); H. Geissel, C. Scheidenberger, H. Weick, https://web-docs.gsi.de/~weick/atima/

  16. C. Scheidenberger et al., Nucl. Instrum. Methods B 142, 441 (1998)

    Article  ADS  Google Scholar 

  17. T. Schwab, Ph.D. thesis JLU Gießen, GSI report GSI-91-10 (1991); N. Iwasa et al., Nucl. Instrum. Methods B 126, 284 (1997); Nucl. Instrum. Methods B 269, 752 (2011)

    Google Scholar 

  18. G. Kraft, Progr. Part. Nucl. Phys. 45, 475 (2000); G. Kraft et al., in Proceeding of the EULIMA Workshop, Nice (1988)

    Google Scholar 

  19. W. Enghardt et al., Phys. Med. Biol. 37, 2127 (1992)

    Article  Google Scholar 

  20. W. Enghardt et al., Onkologie 175, (1999)

    Google Scholar 

  21. A. Magel et al., Nucl. Instrum. Methods B 94, 548 (1994)

    Article  ADS  Google Scholar 

  22. https://people.nscl.msu.edu/~thoennes/isotopes/

  23. M. Bernas et al., Phys. Lett. B 331, 19 (1994)

    Article  ADS  Google Scholar 

  24. M. Bernas et al., Nucl. Phys. A 616, 352 (1997)

    Article  ADS  Google Scholar 

  25. T. Kubo, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003)

    Google Scholar 

  26. M. Hausmann et al., Nucl. Instrum. Methods Phys. Res. B 317, 349 (2013)

    Google Scholar 

  27. J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)

    Article  ADS  Google Scholar 

  28. T. Kurtukian-Nieto et al., Eur. Phys. J. A 50, 135 (2014)

    Article  ADS  Google Scholar 

  29. R. Schneider et al., Z. Phys. A 348, 241 (1994)

    Article  ADS  Google Scholar 

  30. Ch. Engelmann et al., Z. Phys. A 352, 351 (1995)

    Article  ADS  Google Scholar 

  31. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  32. S. Pietri et al., Nucl. Instrum. Methods B 261, 1079 (2007)

    Article  ADS  Google Scholar 

  33. C.B. Hinke et al., Nature 486, 341 (2012)

    Article  ADS  Google Scholar 

  34. V.I. Goldansky, Nucl. Phys. 19, 482 (1960)

    Article  Google Scholar 

  35. M. Pfützner et al., Euro. Phys. J. A 14, 279 (2002)

    Article  ADS  Google Scholar 

  36. J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002)

    Article  ADS  Google Scholar 

  37. K. Miernik et al., Phys. Rev. C 76, 041304(R) (2007)

    Article  ADS  Google Scholar 

  38. I. Tanihata, et al., Scientific program of the super-FRS collaboration, GSI-report 2014-4 (2014). https://doi.org/10.1520/GR-2014-4.

  39. J. Äystö et al., Nucl. Instrum. Methods Phys. Res. B 376, 111 (2016)

    Article  ADS  Google Scholar 

  40. W.R. Plaß et al., Nucl. Instrum. Methods B 317, 457 (2013)

    Article  ADS  Google Scholar 

  41. T. Dickel et al., Nucl. Instrum. Methods A 777, 247 (1989)

    Google Scholar 

  42. T. Dickel et al., Phys. Lett. B 744, 137 (2015)

    Article  ADS  Google Scholar 

  43. S. Purushothaman et al., Nucl. Instrum. Methods B 266, 4488 (2008)

    Article  ADS  Google Scholar 

  44. M. Ranjan et al., Europhys. Lett. 96, 52001 (2011)

    Article  ADS  Google Scholar 

  45. H. Geissel et al., Nucl. Instrum. Methods A 282, 247 (1989)

    Article  ADS  Google Scholar 

  46. S. Ayet et al., Phys. Rev. C 99, 064313 (2019)

    Google Scholar 

  47. F. Greiner, Master thesis, JLU Gießen (2018)

    Google Scholar 

  48. G. Huber et al., Phys. Rev. C 18, 2342 (1978)

    Article  ADS  Google Scholar 

  49. T. Suzuki et al., Phys. Rev. Lett. 75, 3241 (1995)

    Article  ADS  Google Scholar 

  50. T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)

    Article  ADS  Google Scholar 

  51. P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)

    Article  ADS  Google Scholar 

  52. P.G. Hansen, B.M. Sherrill, Nucl. Phys. A 693, 133 (2001)

    Article  ADS  Google Scholar 

  53. P.G. Hansen, J.A. Tostevin, Rev. Nucl. Part. Sci. 53, 219 (2003)

    Article  ADS  Google Scholar 

  54. W. Schwab et al., Z. Phys. A 350, 283 (1995)

    Article  ADS  Google Scholar 

  55. H. Lenske, F. Hofmann, C.M. Keil, Rep. Prog. Nucl. Part. Phys. 46, 187 (2001)

    Article  ADS  Google Scholar 

  56. D. Cortina-Gil et al., Phys. Lett. B 529, 36 (2002)

    Article  ADS  Google Scholar 

  57. R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009)

    Article  ADS  Google Scholar 

  58. G.D. Alkhazov et al., Phys. Rep. C 42, 89 (1978)

    Article  ADS  Google Scholar 

  59. P. Egelhof et al., Eur. Phys. J. A 15, 27 (2002)

    Article  ADS  Google Scholar 

  60. A.V. Dobrovolsky et al., Nucl. Phys. A 766, 1 (2006)

    Article  ADS  Google Scholar 

  61. T. Yamazaki et al., Phys. Rep. 514, 1 (2012)

    Article  ADS  Google Scholar 

  62. E. Friedman, G. Soff, J. Phys. G11, L37 (1985)

    Article  ADS  Google Scholar 

  63. T. Yamazaki et al., Z. Phys. A 355, 219 (1996)

    ADS  Google Scholar 

  64. K. Itahashi et al., Phys. Rev. C 62, 025202 (2000)

    Article  ADS  Google Scholar 

  65. K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004)

    Article  ADS  Google Scholar 

  66. H. Toki, T. Yamazaki, Phys. Lett. B 213, 129 (1988)

    Article  ADS  Google Scholar 

  67. H. Toki, S. Hirenzaki, T. Yamazaki, R.S. Hayano, Nucl. Phys. A 501, 653 (1989)

    Article  ADS  Google Scholar 

  68. H. Gilg et al., Phys. Rev. C 62, 025201 (2000)

    Article  ADS  Google Scholar 

  69. N. Kaiser, W. Weise, Phys. Lett. B 512, 283 (2001)

    Article  ADS  Google Scholar 

  70. T. Nishi et al., Phys. Rev. Lett. 120, 152505 (2018)

    Article  ADS  Google Scholar 

  71. N. Ikeno et al., Eur. Phys. J. A 47 (2011); PTEP 2015, 033D01 (2015)

    Google Scholar 

  72. M. Nanova et al., Phys. Rev. C 94, 025205 (2016)

    Article  ADS  Google Scholar 

  73. Y.K. Tanaka et al., Phys. Rev. Lett. 117, 202501 (2016)

    Article  ADS  Google Scholar 

  74. Y.K. Tanaka et al., Phys. Rev. C 97, 015202 (2018)

    Article  ADS  Google Scholar 

  75. R.S. Hayano et al., Rev. Mod. Phys. 82, 2949 (2010)

    Article  ADS  Google Scholar 

  76. K. Itahashi et al., Prog. Theor. Phys. 128, 601 (2012)

    Article  ADS  Google Scholar 

  77. H. Nagahiro, Phys. Rev. C 87, 045201 (2013)

    Article  ADS  Google Scholar 

  78. M. Winkler et al., Nucl. Instrum. Methods B 266, 4183 (2008)

    Article  ADS  Google Scholar 

  79. C. Rappold et al., Nucl. Phys. A 913, 170 (2013)

    Article  ADS  Google Scholar 

  80. T.R. Saito, Priv. Commun. (2018)

    Google Scholar 

  81. J.S. Winfield et al., Nucl. Instrum. Methods A 704, 76 (2013)

    Article  ADS  Google Scholar 

  82. H. Geissel et al., Nucl. Instrum. Methods B 317, 277 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to thank T. Dickel, B. Franczak, K. Itahashi, R. Kanungo, W. R. Plaß, M. Pfützner, T. R. Saito, Y. K. Tanaka, I. Tanihata, H. Weick, J. S. Winfield, M. Winkler for fruitful collaboration and discussions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Geissel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geissel, H., Münzenberg, G., Scheidenberger, C. (2020). High-Resolution Experiments with Exotic Nuclei and Mesic Atoms. In: Kirsch, J., Schramm, S., Steinheimer-Froschauer, J., Stöcker, H. (eds) Discoveries at the Frontiers of Science. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-030-34234-0_13

Download citation

Publish with us

Policies and ethics