Skip to main content

Haptics for Accessibility in Hardware for Rehabilitation

  • Chapter
  • First Online:
Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life

Abstract

As haptic interfaces become more widely integrated into rehabilitative therapy, the issue of accessibility of haptic information delivery remains a significant challenge to pursue. This chapter explores the latest research related to the task of making motor task information accessible through haptics in hardware (in combination with software) for physical rehabilitation. The concept of accessibility is first defined within the scope of rehabilitative interfaces is discussed. A literature review is presented which features highlights of related work within several categories of haptic information communication, including environmental augmentation, motion progression, postural correction, and guidance of pacing. A person-centric approach featuring haptic information delivery in autonomous at-home training is detailed in this chapter, including findings related to the proposed system and their implications for accessibility. Finally, methods for evaluation of these interfaces and fading of haptic feedback as user skill improves are discussed with directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin, E.J., Blaha, M.J., Chiuve, S.E., Cushman, M., Das, S.R., Deo, R., Floyd, J., Fornage, M., Gillespie, C., Isasi, C.R.: Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 135(10), e146–e603 (2017).

    Article  Google Scholar 

  2. Skilbeck, C.E., Wade, D.T., Hewer, R.L., Wood, V.A.: Recovery after stroke. Journal of Neurology, Neurosurgery & Psychiatry. 46(1), 5–8 (1983). https://doi.org/10.1136/jnnp.46.1.5.

    Article  Google Scholar 

  3. Burdea, G.: The Role of Haptics in Physical Rehabilitation. In: Otaduy, M. (ed.) Haptic Rendering. pp. 517–529. A K Peters/CRC Press (2008). https://doi.org/10.1201/b10636-29.

    Chapter  Google Scholar 

  4. Wulf, G., Shea, C., Lewthwaite, R.: Motor skill learning and performance: a review of influential factors. Medical Education. 44(1), 75–84 (2010). https://doi.org/10.1111/j.1365-2923.2009.03421.x.

    Article  Google Scholar 

  5. Medalia, A., Saperstein, A.: The Role of Motivation for Treatment Success. Schizophrenia Bulletin. 37(S2), S122–S128 (2011). https://doi.org/10.1093/schbul/sbr063.

    Article  Google Scholar 

  6. Williams, C.K., Carnahan, H.: Motor Learning Perspectives on Haptic Training for the Upper Extremities. IEEE Transactions on Haptics. 7(2), 240–250 (2014). https://doi.org/10.1109/TOH.2013.2297102.

    Article  Google Scholar 

  7. Rajanna, V., Vo, P., Barth, J., Mjelde, M., Grey, T., Oduola, C., Hammond, T.: KinoHaptics: An Automated, Wearable, Haptic Assisted, Physio-therapeutic System for Post-surgery Rehabilitation and Self-care. Journal of Medical Systems. 40(3), 60 (2015). https://doi.org/10.1007/s10916-015-0391-3.

    Article  Google Scholar 

  8. Chen, Y., Abel, K.T., Janecek, J.T., Chen, Y., Zheng, K., Cramer, S.C.: Home-based technologies for stroke rehabilitation: A systematic review. International Journal of Medical Informatics. 123, 11–22 (2019). https://doi.org/10.1016/j.ijmedinf.2018.12.001.

    Article  Google Scholar 

  9. Shull, P.B., Damian, D.D.: Haptic wearables as sensory replacement, sensory augmentation and trainer – a review. Journal of NeuroEngineering and Rehabilitation. 12(1), 59 (2015). https://doi.org/10.1186/s12984-015-0055-z.

    Article  Google Scholar 

  10. Cooper, N., Milella, F., Pinto, C., Cant, I., White, M., Meyer, G.: The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment. PLOS ONE. 13(2), e0191846 (2018). https://doi.org/10.1371/journal.pone.0191846.

    Article  Google Scholar 

  11. Lange, B., Koenig, S., Chang, C.-Y., McConnell, E., Suma, E., Bolas, M., Rizzo, A.: Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disability and Rehabilitation. 34(22), 1863–1870 (2012). https://doi.org/10.3109/09638288.2012.670029.

    Article  Google Scholar 

  12. Pamungkas, D., Ward, K.: Electro-tactile feedback system to enhance virtual reality experience. International Journal of Computer Theory and Engineering. 8(6), 465–470 (2016). https://doi.org/10.7763/IJCTE.2016.V8.1090.

    Article  Google Scholar 

  13. Andaluz, V.H., Salazar, P.J., Escudero V., M., Bustamante D., C., Silva S., M., Quevedo, W., Sánchez, J.S., Espinosa, E.G., Rivas, D.: Virtual Reality Integration with Force Feedback in Upper Limb Rehabilitation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D., Sadagic, A., Scheidegger, C., and Isenberg, T. (eds.) Advances in Visual Computing. pp. 259–268. Springer International Publishing (2016).

    Google Scholar 

  14. Fluet, G.G., Deutsch, J.E.: Virtual Reality for Sensorimotor Rehabilitation Post-Stroke: The Promise and Current State of the Field. Current Physical Medicine and Rehabilitation Reports. 1(1), 9–20 (2013). https://doi.org/10.1007/s40141-013-0005-2.

    Article  Google Scholar 

  15. Bortone, I., Leonardis, D., Solazzi, M., Procopio, C., Crecchi, A., Bonfiglio, L., Frisoli, A.: Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: A feasibility study. In: 2017 International Conference on Rehabilitation Robotics (ICORR). pp. 1094–1099 (2017). https://doi.org/10.1109/ICORR.2017.8009395.

    Chapter  Google Scholar 

  16. Sadihov, D., Migge, B., Gassert, R., Kim, Y.: Prototype of a VR upper-limb rehabilitation system enhanced with motion-based tactile feedback. In: 2013 World Haptics Conference (WHC). pp. 449–454. IEEE (2013).

    Google Scholar 

  17. Tokuyama, Y., Rajapakse, R.P.C.J., Miya, S., Konno, K.: Development of a Whack-a-Mole Game with Haptic Feedback for Rehabilitation. In: 2016 Nicograph International (NicoInt). pp. 29–35 (2016). https://doi.org/10.1109/NicoInt.2016.6.

    Chapter  Google Scholar 

  18. Wake, N., Sano, Y., Oya, R., Sumitani, M., Kumagaya, S., Kuniyoshi, Y.: Multimodal virtual reality platform for the rehabilitation of phantom limb pain. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). pp. 787–790 (2015). https://doi.org/10.1109/NER.2015.7146741.

    Chapter  Google Scholar 

  19. Lin, C.-Y., Tsai, C.-M., Shih, P.-C., Wu, H.-C.: Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation. Technology and Health Care. 24(S1), S97–S103 (2016). https://doi.org/10.3233/THC-151056.

    Article  Google Scholar 

  20. Liu, L.Y., Li, Y., Lamontagne, A.: The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review. Journal of NeuroEngineering and Rehabilitation. 15(1), 65 (2018). https://doi.org/10.1186/s12984-018-0408-5.

    Article  Google Scholar 

  21. Lee, H., Choi, S.: Combining haptic guidance and haptic disturbance: an initial study of hybrid haptic assistance for virtual steering task. In: 2014 IEEE Haptics Symposium (HAPTICS). pp. 159–165 (2014). https://doi.org/10.1109/HAPTICS.2014.6775449.

    Chapter  Google Scholar 

  22. Stanley, A.A., Kuchenbecker, K.J.: Evaluation of Tactile Feedback Methods for Wrist Rotation Guidance. IEEE Transactions on Haptics. 5(3), 240–251 (2012). https://doi.org/10.1109/TOH.2012.33.

    Article  Google Scholar 

  23. Ben-Tzvi, P., Danoff, J., Ma, Z.: The Design Evolution of a Sensing and Force-Feedback Exoskeleton Robotic Glove for Hand Rehabilitation Application. Journal of Mechanisms and Robotics. 8(5), 051019-051019–9 (2016). https://doi.org/10.1115/1.4032270.

  24. Chen, C.-Y., Chen, Y.-Y., Chung, Y.-J., Yu, N.-H.: Motion Guidance Sleeve: Guiding the Forearm Rotation Through External Artificial Muscles. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. pp. 3272–3276. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2858036.2858275.

    Chapter  Google Scholar 

  25. Akdogan, E., Shima, K., Kataoka, H., Hasegawa, M., Otsuka, A., Tsuji, T.: The Cybernetic Rehabilitation Aid: Preliminary Results for Wrist and Elbow Motions in Healthy Subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 20(5), 697–707 (2012). https://doi.org/10.1109/TNSRE.2012.2198496.

    Article  Google Scholar 

  26. Gori, M., Vercillo, T., Sandini, G., Burr, D.: Tactile feedback improves auditory spatial localization. Frontiers in Psychology. 5, 1121 (2014). https://doi.org/10.3389/fpsyg.2014.01121.

  27. Sigrist, R., Rauter, G., Marchal-Crespo, L., Riener, R., Wolf, P.: Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Experimental brain research. 233(3), 909–925 (2015).

    Article  Google Scholar 

  28. Pezent, E., Fani, S., Bradley, J., Bianchi, M., O’Malley, M.K.: Separating haptic guidance from task dynamics: A practical solution via cutaneous devices. In: 2018 IEEE Haptics Symposium (HAPTICS). pp. 20–25 (2018). https://doi.org/10.1109/HAPTICS.2018.8357147.

    Chapter  Google Scholar 

  29. Baldi, T.L., Scheggi, S., Aggravi, M., Prattichizzo, D.: Haptic Guidance in Dynamic Environments Using Optimal Reciprocal Collision Avoidance. IEEE Robotics and Automation Letters. 3(1), 265–272 (2018). https://doi.org/10.1109/LRA.2017.2738328.

    Article  Google Scholar 

  30. Panchanathan, R., Rosenthal, J., McDaniel, T.: Rehabilitation and motor learning through vibrotactile feedback. In: Smart Biomedical and Physiological Sensor Technology XI (9107). p. 910717. International Society for Optics and Photonics (2014). https://doi.org/10.1117/12.2050204.

  31. Borghese, N.A., Pirovano, M., Lanzi, P.L., Wüest, S., de Bruin, E.D.: Computational Intelligence and Game Design for Effective At-Home Stroke Rehabilitation. Games for Health Journal. 2(2), 81–88 (2013). https://doi.org/10.1089/g4h.2012.0073.

    Article  Google Scholar 

  32. Peeters, T., Breda, E. van, Saeys, W., Schaerlaken, E., Vleugels, J., Truijen, S., Verwulgen, S.: Vibrotactile Feedback During Physical Exercise: Perception of Vibrotactile Cues in Cycling. International Journal of Sports Medicine. 40(6), 390–396 (2019). https://doi.org/10.1055/a-0854-2963.

    Article  Google Scholar 

  33. Tzorakoleftherakis, E., Bengtson, M.C., Mussa-Ivaldi, F.A., Scheidt, R.A., Murphey, T.D.: Tactile proprioceptive input in robotic rehabilitation after stroke. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp. 6475–6481 (2015). https://doi.org/10.1109/ICRA.2015.7140109.

    Chapter  Google Scholar 

  34. Cuppone, A.V., Squeri, V., Semprini, M., Masia, L., Konczak, J.: Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance. PLOS ONE. 11(10), e0164511 (2016). https://doi.org/10.1371/journal.pone.0164511.

    Article  Google Scholar 

  35. De Nunzio, A.M., Dosen, S., Lemling, S., Markovic, M., Schweisfurth, M.A., Ge, N., Graimann, B., Falla, D., Farina, D.: Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Experimental Brain Research. 235(8), 2547–2559 (2017). https://doi.org/10.1007/s00221-017-4991-7.

    Article  Google Scholar 

  36. Tadayon, A., Zia, J., Anantuni, L., McDaniel, T., Krishnamurthi, N., Panchanathan, S.: A Shoe Mounted System for Parkinsonian Gait Detection and Real-Time Feedback. In: Stephanidis, C. (ed.) HCI International 2015 – Posters’ Extended Abstracts. pp. 528–533. Springer International Publishing (2015).

    Google Scholar 

  37. Kavathekar, P.A., Balkcom, D.J.: A tactile shirt for teaching human motion tasks. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 878–885 (2017). https://doi.org/10.1109/IROS.2017.8202249.

    Chapter  Google Scholar 

  38. Janidarmian, M., Fekr, A.R., Radecka, K., Zilic, Z.: Haptic feedback and human performance in a wearable sensor system. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). pp. 620–624 (2016). https://doi.org/10.1109/BHI.2016.7455975.

    Chapter  Google Scholar 

  39. Yu, B., Feijs, L., Funk, M., Hu, J.: Breathe with Touch: A Tactile Interface for Breathing Assistance System. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., and Winckler, M. (eds.) Human-Computer Interaction – INTERACT 2015. pp. 45–52. Springer International Publishing (2015).

    Google Scholar 

  40. Holland, S., Wright, R.L., Wing, A., Crevoisier, T., Hödl, O., Canelli, M.: A Gait Rehabilitation Pilot Study Using Tactile Cueing Following Hemiparetic Stroke. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare. pp. 402–405. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2014). https://doi.org/10.4108/icst.pervasivehealth.2014.255357.

  41. Maculewicz, J., Erkut, C., Serafin, S.: An investigation on the impact of auditory and haptic feedback on rhythmic walking interactions. International Journal of Human-Computer Studies. 85, 40–46 (2016). https://doi.org/10.1016/j.ijhcs.2015.07.003.

    Article  Google Scholar 

  42. Georgiou, T., Holland, S., Linden, J. van der, Tetley, J., Stockley, R.C., Donaldson, G., Garbutt, L., Pinzone, O., Grasselly, F., Deleaye, K.: A blended user centred design study for wearable haptic gait rehabilitation following hemiparetic stroke. In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth). pp. 72–79 (2015). https://doi.org/10.4108/icst.pervasivehealth.2015.259073.

    Chapter  Google Scholar 

  43. Georgiou, T., Holland, S., van der Linden, J.: Wearable Haptic Devices for Post-stroke Gait Rehabilitation. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. pp. 1114–1119. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2968219.2972718.

    Chapter  Google Scholar 

  44. Islam, R., Holland, S., Georgiou, T., Price, B., Mulholland, P.: A longitudinal rehabilitation case study for hemiparetic gait using outdoor rhythmic haptic cueing via a wearable device. Presented at the 27th European Stroke Conference, Athens, Greece April 11 (2018).

    Google Scholar 

  45. Panchanathan, S., Chakraborty, S., McDaniel, T., Tadayon, R.: Person-Centered Multimedia Computing: A New Paradigm Inspired by Assistive and Rehabilitative Applications. IEEE MultiMedia. 23(3), 12–19 (2016). https://doi.org/10.1109/MMUL.2016.51.

    Article  Google Scholar 

  46. Tadayon, R., Amresh, A., McDaniel, T., Panchanathan, S.: Real-time stealth intervention for motor learning using player flow-state. In: 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH). pp. 1–8 (2018). https://doi.org/10.1109/SeGAH.2018.8401360.

    Chapter  Google Scholar 

  47. Tadayon, R.: A Person-Centric Design Framework for At-Home Motor Learning in Serious Games. PhD Thesis, Arizona State University (2017).

    Google Scholar 

  48. Afzal, M.R., Pyo, S., Oh, M., Park, Y.S., Yoon, J.: Identifying the effects of using integrated haptic feedback for gait rehabilitation of stroke patients. In: 2017 International Conference on Rehabilitation Robotics (ICORR). pp. 1055–1060 (2017). https://doi.org/10.1109/ICORR.2017.8009389.

    Chapter  Google Scholar 

  49. Tadayon, R., McDaniel, T., Panchanathan, S.: A survey of multimodal systems and techniques for motor learning. Journal of information processing systems. 13(1), 8–25 (2017).

    Google Scholar 

  50. Novich, S.D., Eagleman, D.M.: Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Experimental Brain Research. 233(10), 2777–2788 (2015). https://doi.org/10.1007/s00221-015-4346-1.

    Article  Google Scholar 

  51. Summers, I.R., Whybrow, J.J., Gratton, D.A., Milnes, P., Brown, B.H., Stevens, J.C.: Tactile information transfer: A comparison of two stimulation sites. The Journal of the Acoustical Society of America. 118(4), 2527–2534 (2005). https://doi.org/10.1121/1.2031979.

    Article  Google Scholar 

  52. Sonar, H.A., Paik, J.: Soft Pneumatic Actuator Skin with Piezoelectric Sensors for Vibrotactile Feedback. Frontiers in Robotics and AI. 2, 38 (2016). https://doi.org/10.3389/frobt.2015.00038.

  53. Tan, H.Z., Reed, C.M., Durlach, N.I.: Optimum Information Transfer Rates for Communication through Haptic and Other Sensory Modalities. IEEE Transactions on Haptics. 3(2), 98–108 (2010). https://doi.org/10.1109/TOH.2009.46.

    Article  Google Scholar 

  54. D’Alonzo, M., Dosen, S., Cipriani, C., Farina, D.: HyVE: Hybrid Vibro-Electrotactile Stimulation for Sensory Feedback and Substitution in Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 22(2), 290–301 (2014). https://doi.org/10.1109/TNSRE.2013.2266482.

    Article  Google Scholar 

  55. Kilchenman, R., Goldfarb, M.: Force saturation, system bandwidth, information transfer, and surface quality in haptic interfaces. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164, Vol. 2). pp. 1382–1387 (2001). https://doi.org/10.1109/ROBOT.2001.932803.

    Chapter  Google Scholar 

  56. Salazar, J., Okabe, K., Hirata, Y.: Path-Following Guidance Using Phantom Sensation Based Vibrotactile Cues Around the Wrist. IEEE Robotics and Automation Letters. 3(3), 2485–2492 (2018). https://doi.org/10.1109/LRA.2018.2810939.

    Article  Google Scholar 

  57. Jafari, N., Adams, K.D., Tavakoli, M.: Haptics to improve task performance in people with disabilities: A review of previous studies and a guide to future research with children with disabilities. Journal of Rehabilitation and Assistive Technologies Engineering. 3, 1–13 (2016). https://doi.org/10.1177/2055668316668147.

    Article  Google Scholar 

  58. Bark, K., Hyman, E., Tan, F., Cha, E., Jax, S.A., Buxbaum, L.J., Kuchenbecker, K.J.: Effects of Vibrotactile Feedback on Human Learning of Arm Motions. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 23(1), 51–63 (2015). https://doi.org/10.1109/TNSRE.2014.2327229.

    Article  Google Scholar 

  59. Sigrist, R., Rauter, G., Riener, R., Wolf, P.: Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic bulletin & review. 20(1), 21–53 (2013).

    Article  Google Scholar 

  60. Sigrist, R., Rauter, G., Riener, R., Wolf, P.: Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task. Journal of motor behavior. 45(6), 455–472 (2013).

    Article  Google Scholar 

  61. Duarte, B., McDaniel, T., Tadayon, R., Devkota, S., Strasser, G., Ramey, C., Panchanathan, S.: Haptic Vision: Augmenting Non-visual Travel and Accessing Environmental Information at a Distance. In: Basu, A. and Berretti, S. (eds.) Smart Multimedia. pp. 90–101. Springer International Publishing (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Tadayon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tadayon, R. (2020). Haptics for Accessibility in Hardware for Rehabilitation. In: McDaniel, T., Panchanathan, S. (eds) Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life. Springer, Cham. https://doi.org/10.1007/978-3-030-34230-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34230-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34229-6

  • Online ISBN: 978-3-030-34230-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics