Skip to main content

Assistive Soft Exoskeletons with Pneumatic Artificial Muscles

  • Chapter
  • First Online:
Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life

Abstract

Active aging improves health, life satisfaction, and sense of living. This chapter describes state-of-the-art assistive devices and introduces a variety of exoskeletons including hard and soft types. Newly developed pneumatic artificial muscles with low air pressure driven capability are presented, and their application to motion assistance for daily activity and to enhance sports experience are demonstrated. The developed pneumatic gel actuator (PGM) can be driven under very low air pressure and volume. The PGMs are applied to a walk assist suit that does not use any electric devices, named the Unplugged Powered Suit. Control of the assistance timing is attempted by adding foot sensors, electric valves, and micro-computers to the suit. The application of PGMs to assist wrist motion is explored. The developed ForceHand glove can support the user in performing basic movements with the help of pneumatic gel muscles attached to the glove. Applications described include an attempt to take advantage of lightweight and flexible characteristics of PGMs in the development of an assistive suit for sports players to enhance their physical abilities and to create a more exciting experience. Tennis and laser tag games were augmented by this soft-exoskeleton technology and its performance was evaluated in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holden, M. K.: Virtual environments for motor rehabilitation. Cyberpsychology & behavior 8(3), 187–211 (2005)

    Article  Google Scholar 

  2. Massie, T. H., Salisbury, J. K.: The phantom haptic interface: A device for probing virtual objects. In: Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems 55(1), 295–300 (1994)

    Google Scholar 

  3. CyberGlove Systems Inc. http://www.cyberglovesystems.com/

  4. Holden, M., Todorov, E., Callahan, J., Bizzi, E.: Virtual environment training improves motor performance in two patients with stroke: case report. Neurology Report 23(2), 57–67 (1999)

    Article  Google Scholar 

  5. Jack, D., Boian, R., Merians, A.S., Tremaine, M., Burdea, G. C., Adamovich, S. V., Recce, M., Poizner, H.: Virtual reality–enhanced stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 9(3), 308–318 (2001)

    Article  Google Scholar 

  6. Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The Rutgers Master II—new design force-feedback glove. IEEE/ASME Transactions on Mechatronics 7(2), 256–263 (2002)

    Article  Google Scholar 

  7. Loureiro, R. C., Harwin, W. S., Nagai, K., Johnson, M.: Advances in upper limb stroke rehabilitation: a technology push. Medical & biological engineering & computing 49(10), 1103–1118 (2011)

    Article  Google Scholar 

  8. Reinkensmeyer, D. J., Pang, C. T., Nessler, J. A., Painter, C. C.: Reinkensmeyer, D. J., Pang, C. T., Nessler, J. A., Painter, C. C.: web-based robotic rehabilitation. In: Mounir Mokhtari (ed) Integration of assistive technology in the information age, pp. 9:66–71. IOS Press (2001)

    Google Scholar 

  9. Popescu, V. G., Burdea, G. C., Bouzit, M., Hentz, V. R.: A virtual-reality-based telerehabilitation system with force feedback. IEEE Transactions on Information Technology in Biomedicine 4(1), 45–51 (2000)

    Article  Google Scholar 

  10. Johnson, M. J., Feng, X., Johnson, L. M., Winters, J.: Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation 4(1), 6 (2007)

    Article  Google Scholar 

  11. Feng, X., Winters, J. M.: An interactive framework for personalized computer-assisted neurorehabilitation. IEEE Transactions on Information Technology in Biomedicine 11(5), 518–526 (2007)

    Article  Google Scholar 

  12. Feng, X., Ellsworth, C., Johnson, L., Winters, J. M.: UniTherapy: software design and hardware tools of teletherapy. In: Rehabilitation Engineering and Assistive Technology Society North America. Orlando, FL, USA (2004)

    Google Scholar 

  13. Kowalczewski, J., Chong, S. L., Galea, M., Prochazka, A.: In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabilitation and Neural Repair 25(5), 412–422 (2011)

    Article  Google Scholar 

  14. Mosher R. S.: Handiman to Hardiman. Society of Automotive Engineers Transactions 76, 588–597 (1967)

    Google Scholar 

  15. Yan T., Cempini, M., Oddo, C. M., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems 64, 120–136 (2015)

    Article  Google Scholar 

  16. Chen, B., Ma, H., Qin, L. Y. Gao, F., Chan, K. M., Law, S. W., Liao, W. H.: Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation 5, 26–37 (2016)

    Article  Google Scholar 

  17. Aliman, N., Ramli, R., Haris, S. M. M.: Design and development of lower limb exoskeletons: A survey. Robotics and Autonomous Systems 95, 102–116 (2017)

    Article  Google Scholar 

  18. Low, K. H., Liu, X., Goh, C. H., Yu, H.: Locomotive control of a wearable lower exoskeleton for walking enhancement. Journal of Vibration and Control 12(12), 1311–1336 (2006)

    Article  MATH  Google Scholar 

  19. Jezernik, S, Colombo, G., Morari, M.: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Transactions on Robotics and Automation 20(3), 574–582 (2004)

    Article  Google Scholar 

  20. Riener, R., Lünenburger, L., Maier, I., Colombo, G., Dietz, V.: Locomotor Training in Subjects with Sensori-Motor Deficits: An Overview of the Robotic Gait Orthosis Lokomat. Journal of Healthcare Engineering 1(2), 197–216 (2010)

    Article  Google Scholar 

  21. Lim, D. Kim, W., Lee, H., Kim, H., Shin, K., Park, T., Lee, J., Han, C.: Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5345–5350 (2015)

    Google Scholar 

  22. Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development 37(6), 693–700 (2000)

    Google Scholar 

  23. Kong, K., Jeon, D.: Fuzzy Control of a New Tendon-Driven Exoskeletal Power Assistive Device. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 146–151 (2005)

    Google Scholar 

  24. Awad, L. N., Bae, J., O’Donnell, K., De Rossi, S., Hendron, K., Sloot, L. H., Kudzia, P., Allen, S., Holt, K. G., Ellis, T. D., Walsh, C. J.: A soft robotic exosuit improves walking in patients after stroke. Science Translational Medicine 9(400), eaai9084 (2017)

    Article  Google Scholar 

  25. Noritsugu, T., Sasaki, D., Kameda, M., Fukunaga, A., Takaiwa, M.: Wearable power assist device for standing up motion using pneumatic rubber artificial muscles. Journal of Robotics and Mechatronics 19(6), 619–628 (2007)

    Article  Google Scholar 

  26. Sherman, M. A., Seth, A., Delp, S. L.: Simbody: Multibody dynamics for biomedical research, Procedia IUTAM 2, 241–261 (2011)

    Article  Google Scholar 

  27. Rasmussen, J., Damsgaard, M., Surma, E., Christensen, S. T., de Zee, M., Vondrak, V.: AnyBody – a software system for ergonomic optimization. In: Fifth World Congress on Structural and Multidisciplinary Optimization, Vol. 4, p. 6 (2003)

    Google Scholar 

  28. DhaibaWorks. https://www.dhaibaworks.com/

  29. Mao, Y., Agrawal, S. K.: Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics 28(4), 922–931 (2012)

    Article  Google Scholar 

  30. Gupta, A., O’Malley, M. K., Patoglu, V., Burgar, C.: Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training. International Journal of Robotics Research 27(2), 233–251 (2008)

    Article  Google Scholar 

  31. Burgar, C. G., Lum, P., Shor, P. C., Van der Loos, H. F. M.: Development of Robots for Rehabilitation Therapy: The Palo Alto VA/Stanford Experience. Journal of Rehabilitation Research and Development 37(6), 663–673 (2000)

    Google Scholar 

  32. Schabowsky, C. N., Godfrey, S. B., Holley, R. J., Lum, P. S.: Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. Journal of neuroengineering and rehabilitation 7(1), 36 (2010)

    Article  Google Scholar 

  33. Gopura, R. A. R. C., Kiguchi, K., Li, Y.: SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1126–1131. St. Louis, MO, USA (2009)

    Google Scholar 

  34. Perry, J. C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME transactions on mechatronics 12(4), 408–417 (2007)

    Article  Google Scholar 

  35. Martinez, J. A., Ng, P., Lu, S., Campagna, M. S., Celik, O.: Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–6. Seattle, WA, USA (2013)

    Google Scholar 

  36. Noda, T., Teramae, T., Ugurlu, B., Morimoto, J.: Development of an Upper Limb Exoskeleton Powered via Pneumatic Electric Hybrid Actuators with Bowden Cable. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 3573–3578. Chicago, IL, USA (2014)

    Google Scholar 

  37. Allington, J., Spencer, S. J., Klein, J., Buell, M., Reinkensmeyer, D. J., Bobrow, J.: Supinator Extender (SUE): A Pneumatically Actuated Robot for Forearm/Wrist Rehabilitation after Stroke. In: 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1579–1582. Boston, MA, USA (2011)

    Google Scholar 

  38. Andrikopoulos, G., Nikolakopoulos, G., Manesis, S.: Design and development of an exoskeletal wrist prototype via pneumatic artificial muscles. Meccanica 50(11), 2709–2730 (2015)

    Article  Google Scholar 

  39. Sankai, Y.: HAL: Hybrid Assistive Limb Based on Cybernics. In: Robotics Research, pp. 25–34. Springer, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  40. Kawamoto, H., Kandone, H., Sakurai, T., Ariyasu, R., Ueno, Y., Eguchi, K., Sankai, Y.: Development of an assist controller with robot suit HAL for hemiplegic patients using motion data on the unaffected side. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3077–3080. Chicago, IL, USA (2014)

    Google Scholar 

  41. Kawamoto H., Kanbe S., Sankai, Y.: Power assist method for HAL-3 estimating operator’s intention based on motion information. In: The 12th IEEE International Workshop on Robot and Human Interactive Communication, Proc: ROMAN 2003, pp. 67–72. Millbrae, CA, USA (2003)

    Google Scholar 

  42. Ekso Bionics. https://eksobionics.com/

  43. Rex Bionics. https://www.rexbionics.com/

  44. ReWalk. https://rewalk.com/

  45. Quintero, H., Farris, R. J., Members, M. G.: Preliminary Evaluation of a Powered Lower Limb Othosis to Aid Walking in Paraplegic Individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(6), 652–659 (2011)

    Article  Google Scholar 

  46. Zoss, A., Kazerooni, H.: Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics 20(9), 967–988 (2006)

    Article  Google Scholar 

  47. Toyama, S., Yamamoto, G.: Development of wearable-agri-robot – Mechanism for agricultural work. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5801–5806. St. Louis, MO, USA (2009)

    Google Scholar 

  48. Ishii, M., Yamamoto, K., Hyodo, K.: Stand-Alone Wearable Power Assist Suit – Development and Availability. Journal of Robotics and Mechatronics 17(5), 575–583 (2005)

    Article  Google Scholar 

  49. Ikeuchi, Y., Ashihara, J., Hiki, Y., Kudoh, H., Noda, T.: Walking assist device with bodyweight support system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4073–4079, St. Louis, MO, USA (2009)

    Google Scholar 

  50. Pratt, J. E., Krupp, B. T., Morse, C. J., Collins, S. H.: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In: IEEE International Conference on Robotics and Automation, Proc. ICRA’04, pp. 3:2430–2435. New Orleans, LA, USA (2004)

    Google Scholar 

  51. Collins, S. H., Wiggin, M. B., Sawicki, G. S.: Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522(7555), 212–215 (2015)

    Article  Google Scholar 

  52. Malcolm, P., Derave, W., Galle, S., De Clercq, D.: A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking. PLoS One 8(2), e56137 (2013)

    Article  Google Scholar 

  53. Schmidt, K., Duarte, J. E. Grimmer, M., Sancho-Puchades, A., Wei, H., Easthope, C. S., Riener, R.: The myosuit: Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers. Frontiers in Neurorobotics 11, 57 (2017)

    Google Scholar 

  54. Asbeck, A. T., De Rossi, S. M. M., Holt, K. G., Walsh, C. J.: A biologically inspired soft exosuit for walking assistance. The International Journal of Robotics Research 34(6), 744–762 (2015)

    Article  Google Scholar 

  55. Sridar, S., Nguyen, P. H., Zhu, M., Lam, Q. P., Polygerinos, P.: Development of a soft-inflatable exosuit for knee rehabilitation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3722–3727. Vancouver, BC, Canada (2017)

    Google Scholar 

  56. Tanaka H., Hashimoto, M.: Development of a non-exoskeletal structure for a robotic suit. International Journal of Automation Technology 8(2), 201–207 (2014)

    Article  Google Scholar 

  57. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., Walsh, C. J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems 73, 135–143 (2015)

    Article  Google Scholar 

  58. Chiri, A., Giovacchini, F., Vitiello, N., Cattin, E., Roccella, S., Vecchi, F., Carrozza, M. C.: HANDEXOS: Towards an exoskeleton device for the rehabilitation of the hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1106–1111, St. Louis, MO, USA (2009)

    Google Scholar 

  59. Iqbal, J., Khan, H., Tsagarakis, N. G., Caldwell, D. G.: A novel exoskeleton robotic system for hand rehabilitation–conceptualization to prototyping. Biocybernetics and biomedical engineering 34(2), 79–89 (2014)

    Article  Google Scholar 

  60. Conti, R., Allotta, B., Meli, E., Ridolfi, A.: Development, design and validation of an assistive device for hand disabilities based on an innovative mechanism. Robotica 35(4), 892–906 (2017)

    Article  Google Scholar 

  61. Agarwal, P., Fox, J., Yun, Y., O’Malley, M. K., Deshpande, A. D.: An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization. International Journal of Robotics Research 34(14), 1747–1772 (2015)

    Article  Google Scholar 

  62. Lambercy, O., Schröder, D., Zwicker, S., Gassert, R.: Design of a thumb exoskeleton for hand rehabilitation. In: International Convention on Rehabilitation Engineering and Assistive Technology, Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre, Kaki Bukit TechPark II, Article 41. Singapore (2013)

    Google Scholar 

  63. Lu, L., Wu, Q., Chen, X., Shao, Z., Chen, B., Wu, H.: Development of a sEMG-based torque estimation control strategy for a soft elbow exoskeleton. Robotics and Autonomous Systems 111, 88–98 (2019)

    Article  Google Scholar 

  64. Bartlett, N. W., Lyau, V., Raiford, W. A., Holland, D., Gafford, J. B., Ellis, T. D., Walsh, C. J.: A soft robotic orthosis for wrist rehabilitation. Journal of Medical Devices 9(3), 030918 (2015)

    Article  Google Scholar 

  65. Sasaki, D., Noritsugu, T., Takaiwa, M.: Development of active support splint driven by pneumatic soft actuator. In: IEEE International Conference on Robotics and Automation, pp. 520–525. Barcelona, Spain (2005)

    Google Scholar 

  66. Karime, A., Al-Osman, H., Gueaieb, W., El Saddik, A.: E-Glove: An electronic glove with vibro-tactile feedback for wrist rehabilitation of post-stroke patients. In: IEEE International Conference on Multimedia and Expo, pp. 1–6. Barcelona, Spain (2011)

    Google Scholar 

  67. Ogawa, K., Thakur, C., Ikeda, T., Tsuji, T., Kurita, Y.: Development of a Pneumatic Artificial Muscle Driven by Low Pressure and Its Application to the Unplugged Powered Suit. Advanced Robotics 31(21), 1135–1143 (2017)

    Article  Google Scholar 

  68. Kim, J., Kung, S., Soma, R.: Relationship between reduction of hip joint and thigh muscle and walking ability in elderly people. The Japanese Journal of Physical Fitness and Sports Medicine 49(5), 589–596 (2000)

    Google Scholar 

  69. Thakur, C., Ogawa, K., Tsuji, T., Kurita, Y.: Soft Wearable Augmented Walking Suit with Pneumatic Gel Muscles and Stance Phase Detection System to Assist Gait. IEEE Robotics and Automation Letters 3(4), 4257–4264 (2018)

    Article  Google Scholar 

  70. Perry, J., Davids, J. R.: Gait Analysis: Normal and Pathological Function. Journal of Pediatric Orthopaedics 12(6), 815 (1992)

    Article  Google Scholar 

  71. Atroshi, I., Gummesson, C., Johnsson, R., Ornstein, E., Ranstam, J., Rosén, I.: Prevalence of carpal tunnel syndrome in a general population. JAMA 282(2), 153–158 (1999)

    Article  Google Scholar 

  72. Phalen, G. S.: The Carpal-Tunnel Syndrome: seventeen years’ experience in diagnosis and treatment of six hundred fifty-four hands. Journal of Bone and Joint Surgery 48(2), 211–228 (1966)

    Article  Google Scholar 

  73. Das, S., Kishishita, Y., Tsuji, T., Lowell, C., Ogawa, K., Kurita, Y.: ForceHand glove: a wearable force-feedback glove with pneumatic artificial muscles (PAMs). IEEE Robotics and Automation Letters 3(3), 2416–2423 (2018)

    Article  Google Scholar 

  74. Das, S., Lowell, C., Kurita, Y.: Force Your Hand-PAM Enabled Wrist Support. In: International AsiaHaptics conference, pp. 239–245. Kashiwanoha, Chiba, Japan (2016)

    Google Scholar 

  75. Malanga, G. A., Jenp, Y. N., Growney, E. S., An, K. N.: EMG analysis of shoulder positioning in testing and strengthening the supraspinatus. Medicine & Science in Sports & Exercise 28(6), 661–664 (1996)

    Article  Google Scholar 

  76. Ogawa, K., Ikeda, T., Kurita, Y.: Unplugged Powered Suit for Superhuman Tennis. In: 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, pp. 361–364. Tsu, Mie, Japan (2018)

    Google Scholar 

  77. Consolvo, S., Everitt, K., Smith, I., Landay, J. A.: Design requirements for technologies that encourage physical activity. In: Proceedings of the SIGCHI conference on Human Factors in computing systems – CHI ’06, pp. 457–466. Montreal, Quebec, Canada (2006)

    Google Scholar 

  78. Sinclair, J., Hingston, P., Masek, M.: Considerations for the design of exergames. In: 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia – GRAPHITE ’07, pp. 289–295. Perth, Australia (2007)

    Google Scholar 

  79. Nojima, T., Phuong N., Kai, T., Sato, T., Koike, H.: Augmented Dodgeball: An Approach to Designing Augmented Sports. In: 6th Augmented Human International Conference, pp. 137–140. Singapore, Singapore (2015)

    Google Scholar 

  80. Rebane K., Kai, T., Endo, N., Imai, T., Nojima, T., Yanase, Y.: Insights of the augmented dodgeball game design and play test. In: 8th Augmented Human International Conference, Article 12. Silicon Valley, CA, USA (2017)

    Google Scholar 

  81. Nitta, K., Higuchi, K., Rekimoto, J.: HoverBall: augmented sports with a flying ball. In: 5th Augmented Human International Conference, Article 13. Kobe, Japan (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Kurita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurita, Y., Thakur, C., Das, S. (2020). Assistive Soft Exoskeletons with Pneumatic Artificial Muscles. In: McDaniel, T., Panchanathan, S. (eds) Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life. Springer, Cham. https://doi.org/10.1007/978-3-030-34230-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34230-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34229-6

  • Online ISBN: 978-3-030-34230-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics