Skip to main content

Haptics in Rehabilitation, Exergames and Health

  • Chapter
  • First Online:

Abstract

It is well known that home exercise is as good as the rehabilitation center. Unfortunately, passive devices such as dumbbells, elastic bands, stress balls, and tubing, which have been widely used for home-based upper-body rehabilitation, do not provide therapists with the information needed to monitor patients’ progress, identify impairments, and suggest treatments. Moreover, the lack of interactivity of these devices turns rehabilitation exercises into boring, unpleasant tasks. In this chapter, we introduce a family of exergame rehabilitation systems aimed at solving the aforementioned problems. The systems combine recent rehabilitation approaches with efficient, yet affordable, skeleton tracking input technologies, and multimodal interactive computer environment. In addition, the systems provide real-time feedback to stroke patients, summarize feedback after each session, and predict the overall recovery progress. Moreover, these systems show a new style of rehabilitation that motivates patients by engaging family and friends in the rehabilitation process and allowing therapists to remotely assess the progress of patients and adjust the training strategy accordingly. The objective/subjective assessments and usability studies show the feasibility of the proposed systems for rehabilitation in stroke patients with upper limb motor dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deckelbaum, R.J., Williams, C.L.: Childhood obesity: the health issue. Obesity research 9(S11), 239S–243S (2001)

    Article  Google Scholar 

  2. Manson, J.E., Skerret, P.J., Greenland, P., VanItallie, T.B.: The escalating pandemics of obesity and sedentary lifestyle: a call to action for clinicians. Archives of internal medicine 164(3), 249–258 (2004)

    Article  Google Scholar 

  3. Mandsager, K., Harb, S., Cremer, P., Phelan, D., Nissen, S.E., Jaber, W.: Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA network open 1(6), e183605-e183605 (2018)

    Article  Google Scholar 

  4. Toscos, T., Faber, A., An, S., Gandhi, M.P.: Chick clique: persuasive technology to motivate teenage girls to exercise. In: CHI’06 extended abstracts on Human factors in computing systems, ACM (2006)

    Google Scholar 

  5. Maitland, J., Sherwood, S., Barkhuus, L., Anderson, I., Hall, M., Brown, B., Chalmers, M., Muller, H.: Increasing the awareness of daily activity levels with pervasive computing. In: 2006 Pervasive Health Conference and Workshops, IEEE (2006)

    Google Scholar 

  6. Finin, T., Joshi, A., Kagal, L., Ratsimore, O., Korolev, V., Chen, H.: Information agents for mobile and embedded devices. In: International Workshop on Cooperative Information Agents, Springer (2001)

    Google Scholar 

  7. Hoda, M.: SHECARE: Shared Haptic Environment on the Cloud for Arm Rehabilitation Exercises. Doctoral dissertation, Université d’sOttawa/University of Ottawa (2016)

    Google Scholar 

  8. Hoda, M., Hoda, Y., Hage, A., Alelaiwi, A. El Saddik, A.: Cloud-based rehabilitation and recovery prediction system for stroke patients. Cluster Computing, 18(2), 803–815 (2015)

    Article  Google Scholar 

  9. Maclean, N., Pound, P., Wolfe, C., Rudd, A.: The concept of patient motivation: a qualitative analysis of stroke professionals’ attitudes. Stroke 33(2), 444–448 (2002)

    Article  Google Scholar 

  10. Choy, S., Wong, B., Simon, G., Rosenberg, C.: The brewing storm in cloud gaming: A measurement study on cloud to end-user latency. In: Proceedings of the 11th annual workshop on network and systems support for games, IEEE (2012)

    Google Scholar 

  11. Deutsch, J.E., Brettler, A., Smith, C., Welsh, J., John, R., Guarrera-Bowlby, P., Kafri, M.: Nintendo wii sports and wii fit game analysis, validation, and application to stroke rehabilitation. Topics in stroke rehabilitation 18(6), 701–719 (2011)

    Article  Google Scholar 

  12. Viau, A., Feldman, A.G., McFadyen, B.J., Levin, M.F.: Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. Journal of neuroengineering and rehabilitation 1(1), 11 (2004)

    Article  Google Scholar 

  13. Keshner, E.A.: Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool? Journal of NeuroEngineering and Rehabilitation 1(1), 8 (2004)

    Article  Google Scholar 

  14. Turolla, A., Dam, M., Ventura, L., Tonin, P., Agostini, M., Zucconi, C., Kiper, P., Cagnin, A., Piron, L.: Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. Journal of neuroengineering and rehabilitation 10(1), 85 (2013)

    Article  Google Scholar 

  15. Adamovich, S.V., Fluet, G.G., Tunik, E., Merians, A.S.: Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25(1), 29–44 (2009)

    Article  Google Scholar 

  16. Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation. Cyberpsychology & behavior 8(3), 241–262 (2005)

    Article  Google Scholar 

  17. Henderson, A., Korner-Bitensky, N., Levin, M.: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Topics in stroke rehabilitation 14(2), 52–61 (2007)

    Article  Google Scholar 

  18. Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane database of systematic reviews (11), CD008349 (2017)

    Google Scholar 

  19. Holden, M., Todorov, E., Callahan, J., Bizzi, E.: Virtual environment training improves motor performance in two patients with stroke: case report. Journal of neurologic physical therapy 23(2), 57–67 (1999)

    Google Scholar 

  20. Chang, Y.J., Chen, S.F., Huang, J.D., A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in developmental disabilities 32(6) 2566–2570 (2011)

    Article  Google Scholar 

  21. Lange, B., Chang, C.Y., Suma, E., Newman, B., Rizzo, A.S., Bolas, M.: Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE (2011)

    Google Scholar 

  22. Obdržálek, Š., Kurillo, G., Ofli, F., Bajcsy, R., Seto, E., Jimison, H., Pavel, M.: Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly population. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE (2012)

    Google Scholar 

  23. Clark, R.A., Pua, Y.H., Fortin, K., Ritchie, C., Webster, K.E., Denehy, L., Bryant, A.L.: Validity of the Microsoft Kinect for assessment of postural control. Gait & posture 36(3), 372–377 (2012)

    Article  Google Scholar 

  24. Levine, S.R., Gorman, M.: “Telestroke” The Application of Telemedicine for Stroke. Stroke 30(2), 464–469 (1999)

    Article  Google Scholar 

  25. Hoda, M., Dong, H., Ahmed, D., El Saddik, A.: Cloud-based rehabilitation exergames system. In: 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), IEEE (2014)

    Google Scholar 

  26. Durlach, P.J., Fowlkes, J., Metevier, C.J.: Effect of variations in sensory feedback on performance in a virtual reaching task. Presence: Teleoperators & Virtual Environments, 14(4), 450–462 (2005)

    Article  Google Scholar 

  27. Merians, A.S., Jack, D., Boian, R., Tremaine, M., Burdea, G.C., Adamovich, S.V., Recce, M., Poizner, H.: Virtual reality–augmented rehabilitation for patients following stroke. Physical therapy 82(9), 898–915 (2002)

    Google Scholar 

  28. Adamovich, S.V., Merians, A.S., Boian, R., Lewis, J.A., Tremaine, M., Burdea, G.S., Recce, M., Poizner, H.: A virtual reality—based exercise system for hand rehabilitation post-stroke. Presence: Teleoperators & Virtual Environments 14(2), 161–174 (2005)

    Article  Google Scholar 

  29. Boian, R., Sharma, A., Han, C., Merians, A., Burdea, G., Adamovich, S., Recce, M., Tremaine, M., Poizner, H.: Virtual reality-based post-stroke hand rehabilitation. Studies in health technology and informatics 85, 64–70 (2002)

    Google Scholar 

  30. Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The Rutgers Master II-new design force-feedback glove. IEEE/ASME Transactions on mechatronics 7(2), 256–263 (2002)

    Article  Google Scholar 

  31. Reinkensmeyer, D.J., Pang, C.T., Nessler, J.A., Painter, C.C., Web-based telerehabilitation for the upper extremity after stroke. IEEE transactions on neural systems and rehabilitation engineering 10(2), 102–108 (2002)

    Article  Google Scholar 

  32. Broeren, J., Rydmark, M., Björkdahl, A., Sunnerhagen, K.S.: Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke. Neurorehabilitation and neural repair 21(2), 180–189 (2007)

    Article  Google Scholar 

  33. Alamri, A., Iglesias, R., Eid, M., El Saddik, A., Shirmohammadi, S., Lemaire, E.: Haptic exercises for measuring improvement of post-stroke rehabilitation patients. In: 2007 IEEE International Workshop on Medical Measurement and Applications, IEEE (2007)

    Google Scholar 

  34. McLaughlin, M., Rizzo, A., Jung, Y., Peng, W., Yeh, S., Zhu, W.: Haptics-enhanced virtual environments for stroke rehabilitation. In: Proc. IPSI (2005)

    Google Scholar 

  35. Rizzo, A.A., McLaughlin, M., Jung, Y., Peng, W., Yeh, S.C., Zhu, W.: Virtual Therapeutic Environments with Haptics: An Interdisciplinary Approach for Developing Post-Stroke Rehabilitation Systems. CPSN 5, 70–76 (2005)

    Google Scholar 

  36. Adamovich, S.V., Fluet, G.G., Mathai, A., Qiu, Q., Lewis, J., Merians, A.S.: Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. Journal of neuroengineering and rehabilitation 6(1), 28 (2009)

    Article  Google Scholar 

  37. Jack, D., Boian, R., Merians, A.S., Tremaine, M., Burdea, G.C., Adamovich, S.V., Recce, M., Poizner, H.: Virtual reality-enhanced stroke rehabilitation. IEEE transactions on neural systems and rehabilitation engineering 9(3), 308–318 (2001)

    Article  Google Scholar 

  38. Khor, K.X., Chin, P.J.H., Rahman, H.A., Yeong, C.F., Su, E.L.M., Narayanan, A.L.T.: A novel haptic interface and control algorithm for robotic rehabilitation of stoke patients. In: 2014 IEEE Haptics Symposium (HAPTICS), IEEE (2014)

    Google Scholar 

  39. Massie, T.H., Salisbury, J.K.: The phantom haptic interface: A device for probing virtual objects. In: Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, Citeseer (1994)

    Google Scholar 

  40. Morrow, K., Docan, C., Burdea, G., Merians, A.: Low-cost virtual rehabilitation of the hand for patients post-stroke. In: 2006 International Workshop on Virtual Rehabilitation, IEEE (2006)

    Google Scholar 

  41. Luo, X., Kline, T., Fischer, H.C., Stubblefield, K.A., Kenyon, R.V., Kamper, D.G.: Integration of augmented reality and assistive devices for post-stroke hand opening rehabilitation. In: IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE (2006)

    Google Scholar 

  42. Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based systems and their applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(4), 461–482 (2008)

    Article  Google Scholar 

  43. Coote, S., Murphy, B., Harwin, W., Stokes, E.: The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clinical rehabilitation 22(5), 395–405 (2008)

    Article  Google Scholar 

  44. Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. Journal of neuroengineering and rehabilitation 6(1), 20 (2009)

    Article  Google Scholar 

  45. Hesse, S., Schmidt, H., Werner, C., Bardeleben, A.: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current opinion in neurology 16(6), 705–710 (2003)

    Article  Google Scholar 

  46. Acosta, A.M., Dewald, H.A., Dewald, J.P.: Pilot study to test effectiveness of video game on reaching performance in stroke. Journal of rehabilitation research and development 48(4), 431 (2011)

    Article  Google Scholar 

  47. Hogan, N., Krebs, H.I., Sharon, A., Charnnarong, J.: Interactive robotic therapist. Google Patents (1995)

    Google Scholar 

  48. Aisen, M.L., Krebs, H.I., Hogan, N., McDowell, F., Volpe, B.T.: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Archives of neurology 54(4), 443–446 (1997)

    Article  Google Scholar 

  49. Volpe, B., Krebs, H., Hogan, N., Edelsteinn, L., Diels, C., Aisen, M.: Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 53(8), 1874–1874 (1999)

    Article  Google Scholar 

  50. Volpe, B.T., Krebs, H.I., Hogan, N.: Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Current opinion in neurology 14(6), 745–752 (2001)

    Article  Google Scholar 

  51. Sale, P., Bovolenta, F., Agosti, M., Clerici, P., Franceschini, M.: Short-term and long-term outcomes of serial robotic training for improving upper limb function in chronic stroke. International Journal of Rehabilitation Research 37(1), 67–73 (2014)

    Article  Google Scholar 

  52. Loconsole, C., Banno, F., Frisoli, A., Bergamasco, M.: A new Kinect-based guidance mode for upper limb robot-aided neurorehabilitation. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2012)

    Google Scholar 

  53. Jayson, M.I.: Quantification of Disability: Methods of Clinical Measurement and the Approach to the Problems of Disability. Journal of the Royal Society of Medicine 67(5), 400–401 (1974)

    Article  Google Scholar 

  54. Alamri, A., Cha, J., El Saddik, A.: AR-REHAB: An augmented reality framework for poststroke-patient rehabilitation. IEEE Transactions on Instrumentation and Measurement 59(10), 2554–2563 (2010)

    Article  Google Scholar 

  55. Nagasaki, H.: Asymmetric velocity and acceleration profiles of human arm movements. Experimental brain research 74(2), 319–326 (1989)

    Article  Google Scholar 

  56. Beggs, W., Howarth, C.: The movement of the hand towards a target. Quarterly Journal of Experimental Psychology 24(4), 448–453 (1972)

    Article  Google Scholar 

  57. Jebsen, R.H., Taylor, N., Trieschmann, R., Trotter, M.J., Howard, L.A.: An objective and standardized test of hand function. Archives of physical medicine and rehabilitation 50(6), 311–319 (1969)

    Google Scholar 

  58. Kim, H., Miller, L.M., Fedulow, I., Simkins, M., Abrams, G.M., Byl, N., Rosen, J.: Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. IEEE transactions on neural systems and rehabilitation engineering 21(2), 153–164 (2012)

    Article  Google Scholar 

  59. Agnew, P., Maas, F.: An interim Australian version of the Jebsen test of hand function. Australian Journal of Physiotherapy 28(2), 23–29 (1982)

    Article  Google Scholar 

  60. Karime, A., Eid, M., Gueaieb, W., El Saddik, A.: Determining wrist reference kinematics using a sensory-mounted stress ball. In: 2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings, IEEE (2012)

    Google Scholar 

  61. Shakra, I., Orozco, M., El Saddik, A., Shirmohammadi, S., Lemaire, E.: VR-based hand rehabilitation using a haptic-based framework. In: 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, IEEE (2006)

    Google Scholar 

  62. Pang, M.Y., Harris, J.E., Eng, J.J.: A community-based upper-extremity group exercise program improves motor function and performance of functional activities in chronic stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation 87(1), 1–9 (2006)

    Article  Google Scholar 

  63. Lyle, R.C.: A performance test for assessment of upper limb function in physical rehabilitation treatment and research. International journal of rehabilitation research 4(4), 483–492 (1981)

    Article  Google Scholar 

  64. Hardin, M.: Assessment of hand function and fine motor coordination in the geriatric population. Topics in Geriatric Rehabilitation 18(2), 18–27 (2002)

    Article  Google Scholar 

  65. Morasso, P.: Spatial control of arm movements. Experimental brain research 42(2), 223–227 (1981)

    Article  Google Scholar 

  66. Uswatte, G., Giuliani, C., Winstein, C., Zeringue, A., Hobbs, L., Wolf, S.L.: Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: evidence from the extremity constraint-induced therapy evaluation trial. Archives of physical medicine and rehabilitation 87(10), 1340–1345 (2006)

    Article  Google Scholar 

  67. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. Journal of neuroscience 5(7), 1688–1703 (1985)

    Article  Google Scholar 

  68. Hogan, N.: Control and coordination of voluntary arm movements. in 1982 American Control Conference, IEEE (1982)

    Google Scholar 

  69. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD workshop, Seattle, WA, USA (1994)

    Google Scholar 

  70. Bellman, R. Kalaba, R.: On adaptive control processes. IRE Transactions on Automatic Control 4(2), 1–9 (1959)

    Article  MATH  Google Scholar 

  71. Keogh, E.J. Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM (2000)

    Google Scholar 

  72. Furtună, T.F.: Dynamic programming algorithms in speech recognition. Revista Informatica Economică nr, 2(46), 94 (2008)

    Google Scholar 

  73. Rath, T.M., Manmatha, R.: Word image matching using dynamic time warping. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, IEEE (2003)

    Google Scholar 

  74. Corradini, A: Dynamic time warping for off-line recognition of a small gesture vocabulary. In: Proceedings IEEE ICCV workshop on recognition, analysis, and tracking of faces and gestures in real-time systems, IEEE (2001)

    Google Scholar 

  75. Aach, J., Church, G.M., Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6), 495–508 (2001)

    Article  Google Scholar 

  76. Yozbatiran, N., Der-Yeghiaian, L., Cramer, S.C.: A standardized approach to performing the action research arm test. Neurorehabilitation and neural repair 22(1), 78–90 (2008)

    Article  Google Scholar 

  77. Hsieh, Y.W., Wu, C.Y., Lin, K.C., Chang, Y.F., Chen, C.L., Liu, J.S.: Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke 40(4), 1386–1391 (2009)

    Article  Google Scholar 

  78. Cirstea, M. Levin, M.F.: Compensatory strategies for reaching in stroke. Brain 123(5), 940–953 (2000)

    Article  Google Scholar 

  79. Lambercy, O., Dovat, L., Yun, H., Wee, S.K., Kuah, C., Chua, K., Gassert, R., Milner, T., Teo, C.L., Burdet, E.: Rehabilitation of grasping and forearm pronation/supination with the Haptic Knob. In: 2009 IEEE International Conference on Rehabilitation Robotics, IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Hoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoda, M., El Saddik, A., Phan, P., Wai, E. (2020). Haptics in Rehabilitation, Exergames and Health. In: McDaniel, T., Panchanathan, S. (eds) Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life. Springer, Cham. https://doi.org/10.1007/978-3-030-34230-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34230-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34229-6

  • Online ISBN: 978-3-030-34230-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics