Skip to main content

Abstract

Using one sensory modality to compensate for a modality that is unavailable is called Sensory Substitution and it is useful and often necessary for conveying some types of information effectively to people with disabilities. Using haptics to substitute for other modalities provides unique benefits as the tactile modality is incredibly flexible and underutilized. This chapter explores general purpose, media-focused, and interactive applications of Haptic Sensory Substitution as well as the future of Haptic Sensory Substitution and its implications for assistive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboud, S., Hanassy, S., Levy-Tzedek, S., Maidenbaum, S., Amedi, A.: EyeMusic: Introducing a ‘visual’ colorful experience for the blind using auditory sensory substitution. Restorative Neurology and Neuroscience 32(2), 247–257 (2014)

    Article  Google Scholar 

  2. Ando, B., Baglio, S., Marletta, V., Valastro, A.: A Haptic Solution to Assist Visually Impaired in Mobility Tasks. IEEE Transactions on Human-Machine Systems 45(5), 641–646 (2015)

    Article  Google Scholar 

  3. Apple: Timecrest: The Door. https://apps.apple.com/za/app/timecrest-the-door/id1027546326 (2015), https://apps.apple.com/za/app/timecrest-the-door/id1027546326

  4. Bach-Y-Rita, P., Collins, C.C., Saunders, F.A., White, B., Scadden, L.: Vision substitution by tactile image projection. Nature 221(5184), 963–964 (1969)

    Article  Google Scholar 

  5. Bala, S., McDaniel, T., Panchanathan, S.: Visual-to-tactile mapping of facial movements for enriched social interactions. 2014 IEEE International Symposium on Haptic, Audio and Visual Environments and Games, HAVE 2014 – Proceedings pp. 82–87 (2014)

    Google Scholar 

  6. Benjamin, J.M.: The laser cane. Bulletin of prosthetics research pp. 443–50 (1974), http://www.ncbi.nlm.nih.gov/pubmed/4462934

  7. Bliss, J.C., Katcher, M.H., Rogers, C.H., Shepard, R.P.: Optical-to-Tactile Image Conversion for the Blind. IEEE Transactions on Man-Machine Systems 11(1), 58–65 (1970)

    Article  Google Scholar 

  8. Bucchieri, V.: Apparatus and method for presenting and controllably scrolling Braille text (2013), https://patents.google.com/patent/US8382480B2/en

    Google Scholar 

  9. Caspi, A., Dorn, J.D., McClure, K.H., Humayun, M.S., Greenberg, R.J., McMahon, M.J.: Feasibility study of a retinal prosthesis:Spatial vision with a 16-electrode implant. Archives of Ophthalmology 127(4), 398–401 (2009)

    Article  Google Scholar 

  10. Cassinelli, A., Sampaio, E., Joffily, S.B., Lima, H.R., Gusmão, B.P.: Do blind people move more confidently with the Tactile Radar? Technology and Disability 26(2-3), 161–170 (2014)

    Article  Google Scholar 

  11. Clary, P.: Lookout: an app to help blind and visually impaired people learn about their surroundings. https://www.blog.google/outreach-initiatives/accessibility/lookout-app-help-blind-and-visually-impaired-people-learn-about-their-surroundings/ (2018), https://www.blog.google/outreach-initiatives/accessibility/lookout-app-help-blind-and-visually-impaired-people-learn-about-their-surroundings/

  12. Colwell, C., Petrie, H., Kornbrot, D., Hardwick, A., Furner, S.: Haptic virtual reality for blind computer users. In: Assets ’98 Proceedings of the third international ACM conference on Assistive technologies. pp. 92–99. Marina del Rey, California, USA (1998), https://dl.acm.org/citation.cfm?id=274515

  13. De Felice, F., Renna, F., Attolico, G., Distante, A.: A haptic/acoustic application to allow blind the access to spatial information. Proceedings – Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2007 pp. 310–315 (2007)

    Article  Google Scholar 

  14. DMNagel: Timecrest: The Door. https://www.applevis.com/apps/ios/games/ timecrest-door (2017), https://www.applevis.com/apps/ios/games/timecrest-door

  15. Dowino: A Blind Legend. https://play.google.com/store/apps/details?id=com.dowino.ABlindLegend (2019), https://play.google.com/store/apps/details?id=com.dowino.ABlindLegend&hl=en

  16. Eagleman, D.: Plenary talks: A vibrotactile sensory substitution device for the deaf and profoundly hearing impaired. In: 2014 IEEE Haptics Symposium (HAPTICS). pp. xvii–xvii (2014), http://ieeexplore.ieee.org/document/6775419/

  17. Ekstrom1, A.D.: Why vision is important to how we navigate. Hippocampus 73(4), 389–400 (2015)

    Google Scholar 

  18. Eskildsen, P., Morris, A., Collins, C.C., Bach-y Rita, P.: Simultaneous and successive cutaneous two-point thresholds for vibration. Psychonomic Science 14(4), 146–147 (1969)

    Article  Google Scholar 

  19. Fakhri, B., Sharma, S., Soni, B., Chowdhury, A.: A Low Resolution Haptic Interface for Interactive Applications. HCI International pp. 1–6 (2019)

    Google Scholar 

  20. Fallis, A.: ’Smart’ Cane for the Visually Impaired: Design and Controlled Field Testing of an Affordable Obstacle Detection System. 12th International Conference on Mobility and Transport for Elderly and Disabled Persons 53(9), 1689–1699 (2010)

    Google Scholar 

  21. Freedom Scientific Inc.: Freedom Scientific Braille Displays and Keyboards. http://www.freedomscientific.com/ (2018), http://www.freedomscientific.com/

  22. Geldard, F.A.: Cutaneous coding of optical signals: The optohapt. Perception & Psychophysics 1(11), 377–381 (1966)

    Article  Google Scholar 

  23. Geldard, F.A., Sherrick, C.E.: The cutaneous “rabbit”: A perceptual illusion. Science 178(4057), 178–179 (1972)

    Article  Google Scholar 

  24. GHARIEB, W., NAGIB, G.: Smart Cane for Blinds. Proc. 9th Int. Conf. on AI Applications (August), 253–262 (2015), c:{%}5CUsers{%}5Cjessica{%}5CBIBLIOTECA{%}5Cdesign{%}5CMetodologiaexperimental-GuiBonsiepe.pdf{%}5Cnhttp://www.researchgate.net/profile/Gihan{\_}Nagib/publication/255615346{\_}Smart{\_}Cane{\_}for{\_}Blinds/links/542020190cf241a65a1b065a.pdf{%}5Cnhttp://www.researchgate.net/publi

    Google Scholar 

  25. He, L., Wan, Z., Findlater, L., Froehlich, J.E.: TacTILE: A Preliminary Toolchain for Creating Accessible Graphics with 3D-Printed Overlays and Auditory Annotations. Proc. 19th Int. ACM SIGACCESS Conf. Comput. Access. pp. 397–398 (2017), https://doi.org/10.1145/3132525.3134818

  26. Homer Jacobson: The Informational Capacity of the Human Ear. Science 112(2901), 143–144 (1950), http://science.sciencemag.org/content/112/2901/143

    Article  Google Scholar 

  27. Ikei, Y., Wakamatsu, K., Fukuda, S.: Vibratory tactile display of image-based textures. IEEE Computer Graphics and Applications 17(6), 53–61 (1997)

    Article  Google Scholar 

  28. Jacobson, H.: The informational capacity of the human eye. Science 113(2933), 292–293 (1951)

    Article  Google Scholar 

  29. Jansson, G., Petrie, H., Colwell, C., Kornbrot, D.: Haptic virtual environments for blind people: Exploratory experiments with two devices. The International Journal of Virtual Reality 3(4), 8–17 (1999), https://pdfs.semanticscholar.org/348e/45107167a0325051e60c883c153572a127e4.pdf%0Ahttp://www.ijvr.org/issues/pre/4-1/2.pdf

    Google Scholar 

  30. Karyn, G., Gina, M., Alessandra, M., Robert, C., Peter, B., Graeme, C.: A comparison of Tactaid II+ and Tactaid 7 use by adults with a profound hearing impairment. Ear and Hearing 20(6), 471–482 (1999), http://www.scopus.com/inward/record.url?eid=2-s2.0-0033436316&partnerID=40&md5=1058dec9323d2a378c6fcb685db9acc5

    Article  Google Scholar 

  31. König, H., Schneider, J., Strothotte, T.: Haptic Exploration of Virtual Buildings Using Non-Realistic Haptic Rendering. Society pp. 377–384 (2000)

    Google Scholar 

  32. König, H., Schneider, J., Strothotte, T.: Orientation and Navigation in Virtual Haptic-Only Environments. In: Paelke, V., Volbracht, S. (eds.) Proceedings User Guidance in Virtual Environments. pp. 123–136. Shaker Verlag, Aachen, Germany (2001)

    Google Scholar 

  33. Krishna, S., Bala, S., McDaniel, T., McGuire, S., Panchanathan, S.: VibroGlove: an assistive technology aid for conveying facial expressions. In: CHI ’10 Extended Abstracts on Human Factors in Computing Systems. pp. 3637–3642 (2010), https://doi.org/10.1145/1753846.1754031

  34. Kuc, R.: Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification. IEEE Transactions on Biomedical Engineering 49(10), 1173–1180 (2002)

    Article  Google Scholar 

  35. Lahav, O., Mioduser, D.: Construction of cognitive maps of unknown spaces using a multi-sensory virtual environment for people who are blind. Computers in Human Behavior 24(3), 1139–1155 (2008)

    Article  Google Scholar 

  36. Landau, S., Wells, L.: Merging Tactile Sensory Input and Audio Data by Means of The Talking Tactile Tablet. Proc. Eurographics’03 2(60), 414–418 (2003)

    Google Scholar 

  37. Lévesque, V., Pasquero, J., Hayward, V., Legault, M.: Display of virtual braille dots by lateral skin deformation: feasibility study. ACM Transactions on Applied Perception 2(2), 132–149 (2005)

    Article  Google Scholar 

  38. Li, Z., Snavely, N.: MegaDepth: Learning Single-View Depth Prediction from Internet Photos. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2041–2050 (2018)

    Google Scholar 

  39. Liu, C., Wu, J., Furukawa, Y.: FloorNet: A unified framework for floorplan reconstruction from 3D scans. In: European Conference on Computer Vision. vol. 11210 LNCS, pp. 203–219 (2018)

    Chapter  Google Scholar 

  40. Loomis, J.M.: Tactile letter recognition under different modes of stimulus presentation. Perception & Psychophysics 16(2), 401–408 (1974)

    Article  Google Scholar 

  41. Maidenbaum, S., Levy-Tzedek, S., Chebat, D.R., Amedi, A.: Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the “EyeCane”: Feasibility study. PLoS ONE 8(8) (2013)

    Article  Google Scholar 

  42. Mascetti, S., Bernareggi, C., Belotti, M.: TypeInBraille: A Braille-based Typing Application for Touchscreen Devices. In: The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility. pp. 295–296. Dundee, Scotland, UK (2011)

    Google Scholar 

  43. McDaniel, T., Krishna, S., Balasubramanian, V., Colbry, D., Panchanathan, S.: Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. HAVE 2008 – IEEE International Workshop on Haptic Audio Visual Environments and Games Proceedings (October), 13–18 (2008)

    Google Scholar 

  44. McDaniel, T., Villanueva, D., Krishna, S., Panchanathan, S.: MOVeMENT: A framework for systematically mapping vibrotactile stimulations to fundamental body movements. HAVE 2010 – 2010 IEEE International Symposium on Haptic Audio-Visual Environments and Games, Proceedings pp. 13–18 (2010)

    Google Scholar 

  45. McDaniel, T.L., Krishna, S., Colbry, D., Panchanathan, S.: Using tactile rhythm to convey interpersonal distances to individuals who are blind. CHI Extended Abstracts pp. 4669–4674 (2009), https://dl.acm.org/citation.cfm?id=1520718

  46. Meijer, P.B.: An Experimental System for Auditory Image Representations. IEEE Transactions on Biomedical Engineering 39(2), 112–121 (1992)

    Article  Google Scholar 

  47. Menikdiwela, M.P., Dharmasena, K.M., Abeykoon, A.M.S.: Haptic based walking stick for visually impaired people. 2013 International Conference on Circuits, Controls and Communications, CCUBE 2013 pp. 1–6 (2013)

    Google Scholar 

  48. Merzenich, M.M., Michelson, R.P., Pettit, C.R., Schindler, R.A., Reid, M.: Neural Encoding of Sound Sensation Evoked by Electrical Stimulation of the Acoustic Nerve. Annals of Otology, Rhinology & Laryngology 82(4), 486–503 (1973)

    Article  Google Scholar 

  49. Metz, C.: Facebook’s AI Is Now Automatically Writing Photo Captions. https://www.wired.com/2016/04/facebook-using-ai-write-photo-captions-blind-users/ (2016), https://www.wired.com/2016/04/facebook-using-ai-write-photo-captions-blind-users/

  50. Metz, R.: BLITAB. https://www.technologyreview.com/s/603336/this-500-tablet-brings-words-to-blind-users-fingertips/ (2017), https://www.technologyreview.com/s/603336/this-500-tablet-brings-words-to-blind-users-fingertips/

  51. Meyer, I., Mikesch, H.: FEER the Game of Running Blind. http://www.feer.at/index.php/en/home/ (2018), http://www.feer.at/index.php/en/home/

  52. Microsoft: Seeing AI. https://www.microsoft.com/en-us/ai/seeing-ai (2018), https://www.microsoft.com/en-us/ai/seeing-ai

  53. Miller, I., Pather, A., Milbury, J., Hathy, L., O’Day, A., Spence, D.: Guidelines and Standards for Tactile Graphics, 2010. http://www.brailleauthority.org/tg/web-manual/index.html (2011), http://www.brailleauthority.org/tg/web-manual/index.html

  54. Miyazaki, M., Hirashima, M., Nozaki, D.: The “Cutaneous Rabbit” Hopping out of the Body. Journal of Neuroscience 30(5), 1856–1860 (2010), http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3887-09.2010

    Article  Google Scholar 

  55. Monacelli, A.M., Cushman, L.A., Kavcic, V., Duffy, C.J.: Spatial disorientation in Alzheimer’s disease: The remembrance of things passed. Neurology 61(11), 1491–1497 (2003), https://pdfs.semanticscholar.org/e957/14321d7fb821b421f2897496ccd1d10fed60.pdf

    Article  Google Scholar 

  56. National Federation of the Blind Jernigan Institute: The Braille Literacy Crisis in America, Facing the Truth, Reversing the Trend, Empowering the Blind. Tech. rep., National Federation of the Blind, Baltimore Maryland (2009)

    Google Scholar 

  57. Nau, A., Bach, M., Fisher, C.: Clinical Tests of Ultra-Low Vision Used to Evaluate Rudimentary Visual Perceptions Enabled by the BrainPort Vision Device. Translational Vision Science & Technology 2(3), 1 (2013), http://tvst.arvojournals.org/Article.aspx?doi=10.1167/tvst.2.3.1

    Article  Google Scholar 

  58. Novich, S.D., Eagleman, D.M.: Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Experimental Brain Research 233(10), 2777–2788 (2015)

    Article  Google Scholar 

  59. Novich, S.D.: Sound-to-Touch Sensory Substitution and Beyond (2015), https://scholarship.rice.edu/handle/1911/88379

    Google Scholar 

  60. Panchanathan, S., Chakraborty, S., McDaniel, T.: Social Interaction Assistant: A Person-Centered Approach to Enrich Social Interactions for Individuals with Visual Impairments. IEEE Journal on Selected Topics in Signal Processing 10(5), 942–951 (2016)

    Article  Google Scholar 

  61. Pasquero, J.: Survey on communication through touch. McGill Centre for Intelligent Machines 6(August), 1–28 (2006), http://scholar.google.com/scholar?hl=en{&}btnG=Search{\&}q=intitle:Survey+on+Communication+through+Touch{\#}0

    Google Scholar 

  62. Pietrzak, T., Pecci, I., Martin, B.: Static and dynamic tactile directional cues experiments with VTPlayer mouse. In: Proceedings of the Eurohaptics conference. pp. 63–68. Paris, France (2006)

    Google Scholar 

  63. Régo, N.: The Game of Running Blind in FEAR. https://coolblindtech.com/the-game-of-running-blind-in-fear/ (2018), https://coolblindtech.com/the-game-of-running-blind-in-fear/

  64. Riener, a., Hartl, H.: Personal Radar: a self-governed support system to enhance environmental perception. Proceedings of BCS-HCI 2012 pp. 147–156 (1974), http://dl.acm.org/citation.cfm?id=2377933{%}5Cnpapers://c80d98e4-9a96-4487-8d06-8e1acc780d86/Paper/p15116

    Google Scholar 

  65. Bach-y Rita, P., Danilov, Y., Tyler, M., Grimm, R.J.: Late human brain plasticity: vestibular substitution with a tongue BrainPort human-machine interface. Plasticidad y Restauracion Neurologica 4(1-2), 31–34 (2005), http://www.medigraphic.com/pdfs/plasticidad/prn-2005/prn051_2f.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/15194608%0Ahttp://doi.wiley.com/10.1196/annals.1305.006

    Google Scholar 

  66. Rosen, S.: Long Cane Techniques Study Guide Step-By-Step A Guide to Mobility Techniques. https://tech.aph.org/sbs/04_sbs_lc_study.html#4, https://tech.aph.org/sbs/04_sbs_lc_study.html#4

  67. Rosenthal, J., Edwards, N., Villanueva, D., Krishna, S., McDaniel, T., Panchanathan, S.: Design, implementation, and case study of a pragmatic vibrotactile belt. In: IEEE Transactions on Instrumentation and Measurement. vol. 60, pp. 114–125 (2011)

    Google Scholar 

  68. Sampaio, E., Maris, S., Bach-y Rita, P.: Brain plasticity: ‘Visual’ acuity of blind persons via the tongue. Brain Research 908(2), 204–207 (2001)

    Article  Google Scholar 

  69. Schmidt, R.N., Lisy, F.J., Prince, T.S., Shaw, G.S.: Refreshable braille display system (1998), https://patents.google.com/patent/US6354839B1/en

    Google Scholar 

  70. Semwal, S.: MoVE: Mobiltiy training in haptic virtual environment. Tech. rep., University of Colorado at Colorado Springs, Colorado Springs (2001), https://pdfs.semanticscholar.org/243e/b3d64990f34d0b126b36132acc17e4f50737.pdf{%}0Ahttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.6646{\&}rep=rep1{\&}type=pdf

    Google Scholar 

  71. Sharkey, P., Sik Lanyi, C., Standen, P., University of Reading. ICDVRAT, D.o.C.: Multisensory virtual environment for supporting blind persons’ acquisition of spatial cognitive mapping, orientation, and mobility skills (1993), 279 (2002)

    Google Scholar 

  72. Smithmaitrie, P., Kanjantoe, J., Tandayya, P.: Touching force response of the piezoelectric Braille cell. Disability and Rehabilitation: Assistive Technology 3(6), 360–365 (2008)

    Google Scholar 

  73. Stageberg, S.: The Device That Refreshes: How to Buy a Braille Display. https://www.afb.org/aw/5/6/14669 (2004), https://www.afb.org/aw/5/6/14669

  74. Sweller, J., Ayres, P., Kalyuga, S.: Amassing information: The information store principle. In: Cognitive Load Theory (2011)

    Google Scholar 

  75. Tan, H.Z., Pentland, A.: Tactual. Disptays for Wearabte Computing. Personal Technologies pp. 225–230 (1997)

    Article  Google Scholar 

  76. Troxel, D.: Experiments in Tactile and Visual Reading. IEEE Transactions on Human Factors in Electronics 8(4), 261–263 (1967), https://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=1698280

    Article  Google Scholar 

  77. Tzovaras, D., Moustakas, K., Nikolakis, G., Strintzis, M.G.: Interactive mixed reality white cane simulation for the training of the blind and the visually impaired. Personal and Ubiquitous Computing 13(1), 51–58 (2009)

    Article  Google Scholar 

  78. Van Erp, J., Self, B.: Tactile Displays for Orientation, Navigation and Communication in Air, Sea and Land Environments, vol. 323 (2008)

    Google Scholar 

  79. Wall, S., Brewster, S.: Feeling What You Hear: Tactile Feedback for Navigation of Audio Graphs. In: CHI 2006 Proceedings, Disabilities. pp. 1123–1132 (2006)

    Google Scholar 

  80. Wall, S.A., Brewster, S.: Sensory substitution using tactile pin arrays: Human factors, technology and applications. Signal Processing 86(12), 3674–3695 (2006)

    Article  MATH  Google Scholar 

  81. Wang, Q., Levesque, V., Pasquero, J., Hayward, V.: A haptic memory game using the STRESS 2 tactile display. In: Proceedings of CHI 2006. p. 271 (2006)

    Google Scholar 

  82. Ward, J., Meijer, P.: Visual experiences in the blind induced by an auditory sensory substitution device. Consciousness and Cognition 19(1), 492–500 (2010)

    Article  Google Scholar 

  83. White, B.W., Saunders, F.A., Scadden, L., Bach-Y-Rita, P., Collins, C.C.: Seeing with the skin. Perception & Psychophysics 7(1), 23–27 (1970)

    Article  Google Scholar 

  84. WikiHow: How to Swing a Golf Club. https://www.wikihow.com/Swing-a-Golf-Club (2019), https://www.wikihow.com/Swing-a-Golf-Club

  85. Yanagida, Y., Kakita, M., Lindeman, R.W., Kume, Y., Tetsutani, N.: Vibrotactile letter reading using a low-resolution tactor array. Proceedings – 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS pp. 400–406 (2004)

    Google Scholar 

  86. Yang, U., Jang, Y., Kim, G.J.: Designing a VibroTactile Wear for Close Range Interaction for VRbased Motion Training. Icat 2002 pp. 4–9 (2002), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.5793

    Google Scholar 

  87. Zhao, Y., Bennett, C.L., Benko, H., Cutrell, E., Holz, C., Morris, M.R., Sinclair, M.: Enabling People with Visual Impairments to Navigate Virtual Reality with a Haptic and Auditory Cane Simulation. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems – CHI ’18 pp. 1–14 (2018), http://dl.acm.org/citation.cfm?doid=3173574.3173690

Download references

Acknowledgements

The authors thank Arizona State University and the National Science Foundation for their funding support. The preparation of this chapter is supported by the National Science Foundation under Grant No. 1828010 and 1069125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Fakhri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fakhri, B., Panchanathan, S. (2020). Haptics for Sensory Substitution. In: McDaniel, T., Panchanathan, S. (eds) Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life. Springer, Cham. https://doi.org/10.1007/978-3-030-34230-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34230-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34229-6

  • Online ISBN: 978-3-030-34230-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics