Skip to main content

Maps as Ability Amplifiers: Using Graphical Tactile Displays to Enhance Spatial Skills in People Who Are Visually Impaired

  • Chapter
  • First Online:
Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life

Abstract

This chapter reviews several findings that provide strong evidence for the effectiveness of pin-array tactile displays in enhancing spatial skills in people who are visually impaired in educational and rehabilitative contexts. Two main scenarios of use of these displays will be described: geometry and spatial memory training, and orientation and mobility training. The advantages of using pin-array tactile displays over standard rehabilitative methods in terms of increased flexibility and versatility will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourne, R.R.A., Flaxman, S.R., Braithwaite, T., Cicinelli, M.V., Das, A, Jonas, J.B., et al.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 5(9), e888–e897 (2017)

    Article  Google Scholar 

  2. Pizzarello, L., Abiose, A., Ffytche, T., Duerksen, R., Thulasiraj, R., Taylor, H., Faal, H., Rao, G., Kocur, I., Resnikoff, S.: VISION 2020: The Right to Sight: A Global Initiative to Eliminate Avoidable Blindness. Archives of Ophthalmology 122(4), 615–620 (2004) doi:https://doi.org/10.1001/archopht.122.4.615.

    Article  Google Scholar 

  3. Klatzky, R.L., Golledge, R.G., Loomis, J.M., Cicinelli, J.G., Pellegrino, J.W.: Performance of Blind and Sighted Persons on Spatial Tasks. J Vis Impair Blind 89(1), 70–82 (1995)

    Google Scholar 

  4. Chandler, E., Worsfold, J.: Understanding the requirements of geographical data for blind and partially sighted people to make journeys more independently. Appl Ergon 44(6), 919–928 (2013)

    Article  Google Scholar 

  5. Loomis, J.M., Klatzky, R.L., Golledge, R.G., Cicinelli, J.G., Pellegrino, J.W., Phyllis, F.A.: Non visual navigation by blind and sighted: Assessment of path integration ability. J Exp Psychol Gen 122(1), 73–91 (1993)

    Article  Google Scholar 

  6. Pasqualotto, A., Proulx, M.J.: The role of visual experience for the neural basis of spatial cognition. Neurosci Biobehav 36(4), 1179–1187 (2012)

    Article  Google Scholar 

  7. Iachini, T., Ruggiero, G., Ruotolo, F.: Does blindness affect egocentric and allocentric frames of reference in small and large scale spaces? Behav Brain Res 273, 73–81 (2014)

    Article  Google Scholar 

  8. Noordzij, M.L., Zuidhoek, S., Postma, A.: The influence of visual experience on the ability to form spatial mental models based on route and survey descriptions. Cognition 100(2), 321–342 (2006)

    Article  Google Scholar 

  9. Lawton, C.A.: Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles 30(11–12), 765–779 (1994)

    Article  Google Scholar 

  10. Millar, S.: Self-Referent and Movement Cues in Coding Spatial Location by Blind and Sighted Children. Perception 10(3), 255–264 (1981)

    Article  Google Scholar 

  11. Millar, S.: Models of Sensory Deprivation: The Nature/Nurture Dichotomy and Spatial Representation in the Blind. Int J Behav Dev 11(1), 69–87 (1988)

    Article  Google Scholar 

  12. Ribeiro, M.V.M.R., Hasten-Reiter Júnior, H.N., Ribeiro, E.A.N., Jucá, M.J., Barbosa, F.T., Sousa-Rodrigues, C.F. de.: Association between visual impairment and depression in the elderly: a systematic review. Arq Bras Oftalmol 78(3), 197–201 (2015)

    Article  Google Scholar 

  13. Senra, H., Barbosa, F., Ferreira, P., Vieira, C.R., Perrin, P.B., Rogers, H., et al.: Psychologic Adjustment to Irreversible Vision Loss in Adults. Ophthalmology 122(4), 851–861 (2015)

    Article  Google Scholar 

  14. Bell, E.C., Mino, N.M.: Employment Outcomes for Blind and Visually Impaired Adults. J Blind Innov Res 5(2) (2015)

    Google Scholar 

  15. Crewe, J.M., Morlet, N., Morgan, W.H., Spilsbury, K., Mukhtar, A.S., Clark, A., et al.: Mortality and hospital morbidity of working-age blind. Br J Ophthalmol 97(12), 1579–1585 (2013)

    Article  Google Scholar 

  16. Lee, S.A., Spelke, E.S.: Children’s use of geometry for reorientation. Dev Sci 11(5), 743–749 (2008)

    Article  Google Scholar 

  17. Shusterman, A., Ah Lee, S., Spelke, E.S.: Young children’s spontaneous use of geometry in maps. Dev Sci 11(2), F1–F7 (2008)

    Article  Google Scholar 

  18. Garden, S., Cornoldi, C., Logie, R.H.: Visuo-spatial working memory in navigation. Appl Cogn Psychol 16(1), 35–50 (2002)

    Article  Google Scholar 

  19. Salmon, E., Van der Linden, M., Collette, F., Delfiore, G., Maquet, P., Degueldre, C., et al.: Regional brain activity during working memory tasks. Brain 119(5), 1617–1625 (1996)

    Article  Google Scholar 

  20. Grön, G., Wunderlich, A.P., Spitzer, M., Tomczak, R., Riepe, M.W.: Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 3(4), 404–408 (2000)

    Article  Google Scholar 

  21. Berthelot, R., Salin, M.H.: The role of pupils’ spatial knowledge in the elementary teaching of geometry. In: Mammana, C., Villani, V., Eds. Perspectives on the Teaching of Geometry for The 21st Century, pp. 71–77. Kluwer, Dordrecht, The Netherlands (1998)

    Google Scholar 

  22. Dick, T., Kubiak, E.: Issues and Aids for Teaching Mathematics to the Blind. In: Vol. 90, The Mathematics Teacher, pp. 344–349. National Council of Teachers of Mathematics (1997)

    Google Scholar 

  23. Klingenberg, O.G.: Geometry: Educational implications for children with visual impairment. Philos Math Educ J. 20(15) (2007)

    Google Scholar 

  24. Theurel, A., Frileux, S., Hatwell, Y., Gentaz, E.: The Haptic Recognition of Geometrical Shapes in Congenitally Blind and Blindfolded Adolescents: Is There a Haptic Prototype Effect? PLoS One 7(6), e40251 (2012)

    Article  Google Scholar 

  25. Heller, M.A., Gentaz, E.: Psychology of Touch and Blindness. New York and London: Psychology Press, UK (2014)

    Google Scholar 

  26. Woods, A.T., Moore, A., Newell, F.N.: Canonical Views in Haptic Object Perception. Perception 37(12), 1867–1878 (2008)

    Article  Google Scholar 

  27. Postma, A., Zuidhoek, S., Noordzij, M.L., Kappers, A.M.L: Haptic orientation perception benefits from visual experience: Evidence from early-blind, late-blind, and sighted people. Percept Psychophys 70(7), 1197–1206 (2008)

    Article  Google Scholar 

  28. Noordzij, M.L., Zuidhoek, S., Postma, A.: The influence of visual experience on visual and spatial imagery. Perception 36(1), 101–112 (2007)

    Article  Google Scholar 

  29. Ungar, S., Blades, M., Spencer, C.: Mental rotation of a tactile layout by young visually impaired children. Perception 24(8), 891–900 (1995)

    Article  Google Scholar 

  30. Vecchi, T., Monticellai, M.L., Cornoldi, C.: Visuo-spatial working memory: Structures and variables affecting a capacity measure. Neuropsychologia 33(11), 1549–1564 (1995)

    Article  Google Scholar 

  31. Cornoldi, C., Vecchi, T.: Mental imagery in blind people: The role of passive and active visuo-spatial processes. Touch, Represent Blind 143–181 (2000)

    Google Scholar 

  32. Vecchi, T.: Visuo-spatial Imagery in Congenitally Totally Blind People. Memory 6(1), 91–102 (1998)

    Article  Google Scholar 

  33. Vecchi, T., Tinti, C., Cornoldi, C.: Spatial memory and integration processes in congenital blindness. Neuroreport 15(18), 2787–2790 (2004)

    Google Scholar 

  34. Dell, A.G., Newton, D., Petroff, J.: Assistive Technology in the Classroom: Enhancing the School Experiences of Students with Disabilities. Pearson (2016)

    Google Scholar 

  35. Barraga, N.C., Erin, J.N.: Visual impairments and learning. Proed, Austin, Texas (2001)

    Google Scholar 

  36. Klingenberg, O.G.: Conceptual Understanding of Shape and Space by Braille-Reading Norwegian Students in Elementary School. J Vis Impair Blind 106(8), 453–465 (2012)

    Article  Google Scholar 

  37. Theurel, A., Witt, A., Claudet, P., Hatwell, Y., Gentaz, E.: Tactile picture recognition by early blind children: the effect of illustration technique. J Exp Psychol Appl 19(3), 233–240 (2013)

    Article  Google Scholar 

  38. Edman, P.K.: Tactile graphics. American Foundation for the Blind, New York, New York, USA (1992)

    Google Scholar 

  39. Landau, S., Gourgey, K.: A new approach to interactive audio/tactile computing: The Talking Tactile Tablet. In: Proceedings of Technology and Persons with Disabilities Conference. California State University, Northridge (2003)

    Google Scholar 

  40. Borges, A., Jansen, L.R.: Blind people and the computer: an interaction that explores drawing potentials. In: Proceedings of SEMENGE’99-Seminario de Engenharia. Universidade Federal Fluminense (1999)

    Google Scholar 

  41. Vidal-Verdú, F., Hafez, M.: Graphical tactile displays for visually-impaired people. IEEE Trans Neural Syst Rehabil Eng. 15(1), 119–130 (2007)

    Article  Google Scholar 

  42. Xu, C., Israr, A., Poupyrev, I., Bau, O., Harrison, C.: Tactile display for the visually impaired using TeslaTouch. In: Proceedings CHI EA ’11, pp. 317–322 (2011)

    Google Scholar 

  43. Motto Ros, P., Dante, V., Mesin, L., Petetti, E., Del Giudice, P., Pasero, E.: A new dynamic tactile display for reconfigurable braille: implementation and tests. Front Neuroeng 7, 6 (2014)

    Google Scholar 

  44. Chouvardas, V.G., Miliou, A.N., Hatalis, M.K., et al.: Tactile displays: a short overview and recent developments. In: Proc 5th Int Conf Technol Autom, pp. 246–251 (2005)

    Google Scholar 

  45. Pietrzak, T., Crossan, A., Brewster, S.A., Martin, B., Pecci, I.: Exploring Geometric Shapes with Touch. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., and Winckler, M. (eds.) Human-Computer Interaction – INTERACT 2009, pp. 145–148. Springer Berlin Heidelberg (2009)

    Chapter  Google Scholar 

  46. Rastogi, R., Pawluk, D.T.V.: Dynamic tactile diagram simplification on refreshable displays. Assist Technol 25(1), 31–38 (2013)

    Article  Google Scholar 

  47. Rastogi, R., Pawluk, T.V.D., Ketchum, J.: Intuitive Tactile Zooming for Graphics Accessed by Individuals Who are Blind and Visually Impaired. IEEE Trans Neural Syst Rehabil Eng 21(4), 655–663 (2013)

    Article  Google Scholar 

  48. McLaughlin, M.L., Sukhatme, G., Hespanha, J.: Touch in Virtual Environments: Haptics and the Design of Interactive Systems. Prentice-Hall (2001)

    Google Scholar 

  49. Rassmus-Gröhn, K.: User-Centered Design of Non-Visual Audio-Haptics. PhD Thesis, Lund University (2008)

    Google Scholar 

  50. Brayda, L., Campus, C., Memeo, M., Lucagrossi, L.: The importance of visual experience, gender and emotion in the assessment of an assistive tactile mouse. IEEE Trans Haptics 8(3), 279–286 (2015)

    Article  Google Scholar 

  51. Buzzi, M.C., Buzzi, M., Leporini, B., Senette, C.: Playing with Geometry: A Multimodal Android App for Blind Children. In: Proc 11th Biannu Conf Ital SIGCHI Chapter, pp. 134–137 (2015)

    Google Scholar 

  52. Giudice, N.A., Palani, H.P., Brenner, E., Kramer, K.M.: Learning non-visual graphical information using a touch-based vibro-audio interface. In: Proceedings of the 14th international ACM SIGACCESS conference on Computers and accessibility – ASSETS ’12, p. 103. ACM Press, New York, New York, USA (2012)

    Chapter  Google Scholar 

  53. Wall, S.A., Brewster, S.: Sensory substitution using tactile pin arrays: Human factors, technology and applications. Signal Processing 86(12), 3674–3695 (2019)

    Article  MATH  Google Scholar 

  54. O’Modhrain, S., Giudice, N.A., Gardner, J.A., Legge, G.E.: Designing media for visually-impaired users of refreshable touch displays: Possibilities and pitfalls. IEEE Trans Haptics 8(3), 248–257 (2015).

    Article  Google Scholar 

  55. Leo, F., Baccelliere, C., Waszkielewicz, A., Cocchi, E., Brayda, L.: Tactile Symbol Discrimination on a Small Pin-array Display. In: Proc 2018 Work Multimed Access Hum Comput Interface – MAHCI’18, pp. 9–15 (2018)

    Chapter  Google Scholar 

  56. Fritz, J., Way, T., Barner, K.: Haptic representation of scientific data for visually impaired or blind persons. In: Proc CSUN Conf Technol Disabil (1996)

    Google Scholar 

  57. Shimojo, M., Shinohara, M., Fukui, Y.: Shape identification performance and pin-matrix density in a 3 dimensional tactile display. In: Proceedings of IEEE 1997 Annual International Symposium on Virtual Reality, pp. 180–187. IEEE Comput. Soc. Press (1997)

    Google Scholar 

  58. Brewster, S., Brown, L.M.: Tactons: structured tactile messages for non-visual information display. In: 5th Australas User Interface Conf 2004 (v28), pp. 15–23 (2004)

    Google Scholar 

  59. Besse, N., Rosset, S., Zarate, J.J., Ferrari, E., Brayda, L., Shea, H.: Understanding graphics on a scalable latching assistive haptic display using a shape memory polymer membrane. IEEE Trans Haptics 11(1), 30–38 (2017)

    Article  Google Scholar 

  60. Ritterfeld, U., Cody, M., Vorderer, P.: Serious games: Mechanisms and effects. Serious Games: Mechanisms and Effects, pp. 1–530. Routledge, New York/London: Routledge (2009)

    Book  Google Scholar 

  61. Breuer, J., Bente, G.: Why so serious? On the relation of serious games and learning. J Comput Game Cult 4(1), 7–24 (2010)

    Google Scholar 

  62. Leo, F., Cocchi, E., Brayda, L.: The Effect of Programmable Tactile Displays on Spatial Learning Skills in Children and Adolescents of Different Visual Disability. IEEE Trans Neural Syst Rehabil Eng 25(7), 861–872 (2017)

    Article  Google Scholar 

  63. Leo, F., Tinti, C., Chiesa, S., Cavaglià, R., Schmidt, S., Cocchi, E., et al.: Improving spatial working memory in blind and sighted youngsters using programmable tactile displays. SAGE Open Med 6, 205031211882002 (2018). http://journals.sagepub.com/doi/10.1177/2050312118820028

    Article  Google Scholar 

  64. Siegel, A.W., White, S.H.: The Development of Spatial Representations of Large-Scale Environments. Adv Child Dev Behav 10, 9–55 (1975)

    Article  Google Scholar 

  65. Tolman, E.C.: Cognitive maps in rats and men. Psychol Rev 55(4), 189–208 (1948)

    Article  Google Scholar 

  66. Strelow, E.R.: What is needed for a theory of mobility: Direct perceptions and cognitive maps—lessons from the blind. Psychol Rev 92(2), 226–248 (1985)

    Article  Google Scholar 

  67. Gibson, J.J.: Visually controlled locomotion and visual orientation in animals. Br J Psychol 49(3), 182–194 (1958)

    Article  Google Scholar 

  68. Gibson, J.J.: The Ecological Approach to Visual Perception. Psychology Press (2014)

    Google Scholar 

  69. Thinus-Blanc, C., Gaunet, F.: Representation of space in blind persons: vision as a spatial sense? Psychol Bull. 121(1), 20–42 (1997)

    Article  Google Scholar 

  70. Rieser, J.J., Guth, D.A., Hill, E.W.: Sensitivity to Perspective Structure While Walking without Vision. Perception 15(2), 173–188 (1986)

    Article  Google Scholar 

  71. Bryant, D.J.: Representing Space in Language and Perception. Mind Lang 12(3–4), 239–264 (2007)

    Article  Google Scholar 

  72. Giudice, N.A., Betty, M.R., Loomis, J.M.: Functional equivalence of spatial images from touch and vision: evidence from spatial updating in blind and sighted individuals. J Exp Psychol Learn Mem Cogn 37(3), 621–634 (2011)

    Article  Google Scholar 

  73. Campus, C., Brayda, L., De Carli, F., Chellali, R., Famà, F., Bruzzo, C., et al.: Tactile exploration of virtual objects for blind and sighted people: the role of beta 1 EEG band in sensory substitution and supramodal mental mapping. J Neurophysiol 107(10), 2713–2729 (2012)

    Article  Google Scholar 

  74. Gaunet, F., Thinus-Blanc, C.: Early-Blind Subjects’ Spatial Abilities in the Locomotor Space: Exploratory Strategies and Reaction-to-Change Performance. Perception 25(8), 967–981 (1996)

    Article  Google Scholar 

  75. Herman, J.F., Chatman, S.P., Roth, S.F.: Cognitive mapping in blind people: Acquisition of spatial relationships in a large-scale environment. J Vis Impair Blind 77(4), 161–166 (1983)

    Google Scholar 

  76. Millar, S.: Understanding and Representing Space: Theory and Evidence From Studies with Blind and Sighted Children. Oxford University Press, UK (1994)

    Google Scholar 

  77. Taylor, H.A., Tversky, B.: Spatial mental models derived from survey and route descriptions. J Mem Lang 31(2), 261–292 (1992)

    Article  Google Scholar 

  78. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Oxford: Clarendon Press (1978)

    Google Scholar 

  79. Schmidt, S., Tinti, C., Fantino, M., Mammarella, I.C., Cornoldi, C.: Spatial representations in blind people: The role of strategies and mobility skills. Acta Psychol (Amst) 142(1), 43–50 (2013)

    Article  Google Scholar 

  80. Loomis, J.M., Klatzky, R.L., Lederman, S.J.: Similarity of Tactual and Visual Picture Recognition with Limited Field of View. Perception 20(2), 167–77 (1991)

    Article  Google Scholar 

  81. Postma, A., Zuidhoek, S., Noordzij, M.L., Kappers, A.M.L.: Differences between early blind, late blind and blindfolded sighted people in haptic spatial configuration learning and resulting memory traces. In: Vol. 36, Perception, pp. 1253–1265 (2007)

    Google Scholar 

  82. Tinti, C., Adenzato, M., Tamietto, M., Cornoldi, C.: Visual experience is not necessary for efficient survey spatial cognition: evidence from blindness. Q J Exp Psychol. 59(7), 1306–1328 (2006)

    Article  Google Scholar 

  83. Haklay, M., Weber, P.: OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput 7(4), 12–18 (2008)

    Article  Google Scholar 

  84. Levesque, V., Petit, G., Dufresne, A., Hayward, V.: Adaptive level of detail in dynamic, refreshable tactile graphics. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 1–5. IEEE (2012)

    Google Scholar 

  85. Picard, D.: VISUO-TACTILE ATLAS. Organisation mondiale de la propriété intellectuelle, France (2012)

    Google Scholar 

  86. Leonard, J.A., Newman, R.C.: Spatial Orientation in the Blind. Nature 215(5108), 1413–1414 (1967)

    Article  Google Scholar 

  87. Bentzen, B.L.: Production and Testing of an Orientation and Travel Map for Visually Handicapped Persons. New Outlook Blind (1972). https://eric.ed.gov/?id=EJ066516

  88. Ungar, S., Blades, M., Spencer, C.: The role of tactile maps in mobility training. Br J Vis Impair 11(2), 59–61 (1993)

    Article  Google Scholar 

  89. Ungar, S., Blades, M., Spencer, C., Morsley, K.: Can visually impaired children use tactile maps to estimate directions? J Vis Impair Blind 88(3), 221–233 (1994)

    Google Scholar 

  90. Ungar, S., Blades, M., Spencer, C.: Teaching visually impaired children to make distance judgments from a tactile map. J Vis Impair Blind 91(2):163–174 (1997)

    Google Scholar 

  91. Ungar, S., Blades, M., Spencer, C.: The construction of cognitive maps by children with visual impairment. Constr Cogn maps 32(1951), 247–273 (1996)

    Google Scholar 

  92. Cattaneo, Z., Vecchi, T.: Blind vision : the neuroscience of visual impairment. MIT Press (2011)

    Google Scholar 

  93. Brambring, M., Weber, C.: Tactual, verbal and exploratory information for geographic orientation of the blind. Z Exp Angew Psychol 28(1):23–37 (1981)

    Google Scholar 

  94. Papadopoulos, K., Koustriava, E., Koukourikos, P.: Orientation and mobility aids for individuals with blindness: Verbal description vs. audio-tactile map. Assist Technol 30(4), 191–200 (2018)

    Article  Google Scholar 

  95. Hyperbraille: The project. http://hyperbraille.de/project/ (2019)

  96. Zeng, L., Weber, G.: Exploration of Location-Aware You-Are-Here Maps on a Pin-Matrix Display. IEEE Trans Human-Machine Syst 46(1), 88–100 (2016)

    Article  Google Scholar 

  97. Velazquez, R., Fontaine, E., Pissaloux, E.: Coding the Environment in Tactile Maps for Real-Time Guidance of the Visually Impaired. In: 2006 IEEE International Symposium on MicroNanoMechanical and Human Science, pp. 1–6. IEEE (2006)

    Google Scholar 

  98. Ivanchev, M., Zinke, F., Lucke, U.: Pre-journey Visualization of Travel Routes for the Blind on Refreshable Interactive Tactile Displays. In: Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., and Zagler, W. (eds.) Computers Helping People with Special Needs, pp. 81–88. Springer International Publishing (2014)

    Google Scholar 

  99. Zeng, L., Weber, G.: Audio-Haptic Browser for a Geographical Information System. In: Miesenberger, K., Klaus, J., Zagler, W., and Karshmer, A. (eds.) Computers Helping People with Special Needs, pp. 466–473. Springer Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  100. Zeng, L., Weber, G.: ATMap: Annotated Tactile Maps for the Visually Impaired. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., and Müller, V.C. (eds.) Cognitive Behavioural Systems, pp. 290–298. Springer Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  101. Schmitz, B., Ertl, T.: Interactively Displaying Maps on a Tactile Graphics Display. In: SKALID 2012-Spatial Knowledge Acquisition with Limited Information Displays: 13 (2012)

    Google Scholar 

  102. Zeng, L., Miao, M., Weber, G.: Interactive Audio-haptic Map Explorer on a Tactile Display. Interact Comput 27(4), 413–429 (2014)

    Article  Google Scholar 

  103. Brayda, L., Leo, F., Baccelliere, C., Ferrari, E., Vigini, C.: Updated Tactile Feedback with a Pin Array Matrix Helps Blind People to Reduce Self-Location Errors. Micromachines 9(7), 351 (2018)

    Article  Google Scholar 

  104. Zarate, J.J., Shea, H.: Using Pot-Magnets to Enable Stable and Scalable Electromagnetic Tactile Displays. IEEE Trans Haptics 10(1), 106–112 (2017)

    Article  Google Scholar 

  105. Morrongiello, B.A., Timney, B., Humphrey, G.K., Anderson, S., Skory, C.: Spatial Knowledge in Blind and Sighted Children. J Exp Child Psychol 59(2), 211–233 (1995)

    Article  Google Scholar 

  106. Leo, F., Violin, T., Inuggi, A., Raspagliesi, A., Capris, E., Cocchi, E., et al.: Blind Persons Get Improved Sense of Orientation and Mobility in Large Outdoor Spaces by Means of a Tactile Pin-Array Matrix. In: CHI’19 Workshop on Hacking Blind Navigation. Glasgow, Scotland (2019)

    Google Scholar 

Download references

Acknowledgments

We thank Silvia Dini, Tania Violin, Claudia Vigini, Marisa Lococciolo, Anna Gettani, Elisabetta Capris and Claudio Cassinelli of the Istituto Chiossone for their organizational, logistic and testing support in Genoa and for their organizational activity in Bologna and Milan. We thank Damiano Storelli, Giovanni Cellucci and Fernando Torrente of the Istituto Cavazza in Bologna for the logistic and testing support in Bologna. We thank Laura Muro and Franco Lisi of the Istituto dei Ciechi in Milan for the logistic and testing support in Milan. For the Istituto Italiano di Tecnologia, we thank Alberto Inuggi for his technical support, Angelo Raspagliesi and Sara Nataletti for their help in testing in Genoa, Giulio Sandini for his strategy and financial support. Finally, we wish to thank all the participants and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Leo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leo, F., Cocchi, E., Ferrari, E., Brayda, L. (2020). Maps as Ability Amplifiers: Using Graphical Tactile Displays to Enhance Spatial Skills in People Who Are Visually Impaired. In: McDaniel, T., Panchanathan, S. (eds) Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life. Springer, Cham. https://doi.org/10.1007/978-3-030-34230-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34230-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34229-6

  • Online ISBN: 978-3-030-34230-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics