Skip to main content

A Note on Candeal and Induráin’s Semiorder Separability Condition

  • Chapter
  • First Online:
Mathematical Topics on Representations of Ordered Structures and Utility Theory

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 263))

  • 301 Accesses

Abstract

We show that the semiorder separability condition used by Candeal and Induráin in their characterization of semiorders having a strict representation with positive threshold can be factorized into two conditions. The first says that the trace of the semiorder must have a numerical representation. The second asserts that the number of “noses” in the semiorder must be finite or countably infinite. We discuss the interest of such a factorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Earlier results in the general case include Abrisqueta et al. [1], Candeal et al. [10], Gensemer [21,22,23], Narens [30].

  2. 2.

    Indeed, in this semiorder, for all \(x \in \mathbb {R}\), the ordered pair \((x+1, x)\) is a nose, as defined in Definition 4. Hence, we have an uncountable number of noses, while the existence of a strict numerical representation implies that the number of noses must be finite or countably infinite. See Remark 2.

References

  1. Abrísqueta, F.J., Candeal, J.C., Induráin, E., Zudaire, M.: Scott-Suppes representability of semiorders: internal conditions. Math. Soc. Sci. 57(2), 245–261 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  3. Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., Mehta, G.B.: The non-existence of a utility function and the structure of non-representable preference relations. J. Math. Econ. 37(1), 17–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beja, A., Gilboa, I.: Numerical representations of imperfectly ordered preferences (a unified geometric exposition). J. Math. Psychol. 36(3), 426–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosi, G., Candeal, J.C., Induráin, E., Oloriz, E., Zudaire, M.: Numerical representations of interval orders. Order 18(2), 171–190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouyssou, D., Pirlot, M.: Unit representation of semiorders on countable sets. Working paper (2019)

    Google Scholar 

  7. Bouyssou, D., Pirlot, D.: Revisiting the representation of semiorders: the uncountable case. Working paper (2019)

    Google Scholar 

  8. Bridges, D.S., Mehta, D.S.: Representations of preferences orderings. Number 422 in Lecture Notes in Economics and Mathematical Systems, 1st edn. Springer, Berlin Heidelberg (1995)

    Book  MATH  Google Scholar 

  9. Candeal, J.C., Induráin, E.: Semiorders and thresholds of utility discrimination: solving the Scott-Suppes representability problem. J. Math. Psychol. 54(6), 485–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candeal, J.C., Induráin, E., Zudaire, M.: Numerical representability of semiorders. Math. Soc. Sci. 43(1), 61–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candeal, J.C., Estevan, A., Gutiérrez García, J., Induráin, E.: Semiorders with separability properties. J. Math. Psychol. 56, 444–451 (2012). ISSN 0022-2496,1096-0880. https://doi.org/10.1016/j.jmp.2013.01.003

    Article  MathSciNet  Google Scholar 

  12. Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets: Concepts, Results and Uses. Number 144 in Encyclopedia of Mathematics and its Applications. Cambridge University Press (2012). ISBN 978-1-107-01369-8

    Google Scholar 

  13. Doignon, J.-P., Falmagne, J.-C.: Well-graded families of relations. Discret. Math. 173(1–3), 35–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doignon, J.-P., Ducamp, A., Falmagne, J.-C.: On realizable biorders and the biorder dimension of a relation. J. Math. Psychol. 28(1), z 73–109 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dourado, M.C., Le, V.B., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Mixed unit interval graphs. Discret. Math. 312, 3357–3363 (2012). ISSN 0012–365X. https://doi.org/10.1016/j.disc.2012.07.037

    Article  MathSciNet  MATH  Google Scholar 

  16. Estevan, A., Gutiérrez García, J., Induráin, E.. Numerical representation of semiorders. Order 30(2), 455–462 (2013). ISSN 1572-9273. https://doi.org/10.1007/s11083-012-9255-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Fishburn, P.C.: Interval representations for interval orders and semiorders. J. Math. Psychol. 10(1), 91–105 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fishburn, P.C.: Interval Orders and Intervals Graphs. Wiley, New York (1985)

    Book  MATH  Google Scholar 

  19. Fishburn, P.C., Monjardet, B.: Norbert Wiener on the theory of measurement (1914, 1915, 1921). J. Math. Psychol. 36(2), 165–184 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frankl, P., Maehara, H.: Open-interval graphs versus closed-interval graphs. Discret. Math. 63, 97–100 (1987). ISSN 0012-365X. https://doi.org/10.1016/0012-365x(87)90156-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Gensemer, S.H.: On relationships between numerical representations of interval orders and semiorders. J. Econ. Theory 43, 157–169 (1987a)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gensemer, S.H.: Continuous semiorder representations. J. Math. Econ. 16, 275–289 (1987b)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gensemer, S.H.: On numerical representations of semiorders. Math. Soc. Sci. 15, 277–286 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gonzales, Ch.: Additive utility without restricted solvability on every component. J. Math. Psychol. 47(1), 47–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement: Additive and Polynomial Representations, vol. 1. Academic Press, New York (1971)

    Chapter  MATH  Google Scholar 

  26. Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24(2), 178–191 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manders, K.L.: On JND representations of semiorders. J. Math. Psychol. 24(3), 224–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Monjardet, B.: Axiomatiques et propriétés des quasi-ordres. Mathématiques et Sciences Humaines 63, 51–82 (1978)

    MATH  Google Scholar 

  29. Nakamura, Y.: Real interval representations. J. Math. Psychol. 46(2), 140–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Narens, L.: The measurement theory of dense threshold structures. J. Math. Psychol. 38(3), 301–321 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oloriz, E., Candeal, J.C., Induráin, E.: Representability of interval orders. J. Econ. Theory 78(1), 219–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pirlot, M.: Minimal representation of a semiorder. Theory Decis. 28, 109–141 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pirlot, M.: Synthetic description of a semiorder. Discret. Appl. Math. 31, 299–308 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pirlot, M., Vincke, Ph.: Semiorders. Properties, Representations, Applications. Kluwer, Dordrecht (1997)

    Chapter  MATH  Google Scholar 

  35. Rautenbach, D., Szwarcfiter, J.L.: Unit interval graphs: a story with open ends. Electron. Notes Discret. Math. 38, 737–742 (2011). ISSN 1571-0653. https://doi.org/10.1016/j.endm.2011.10.023

    Article  MATH  Google Scholar 

  36. Rautenbach, D., Szwarcfiter, J.L.: Unit interval graphs of open and closed intervals. J. Graph Theory 72, 418–429 (2013). ISSN 0364-9024,1097-0118. https://doi.org/10.1002/jgt.21650

    Article  MathSciNet  MATH  Google Scholar 

  37. Roberts, F.S.: Measurement Theory with Applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Reading (1979)

    Google Scholar 

  38. Roubens, M., Vincke, Ph.: Preference Modelling. Number 250 in Lecture Notes in Economics and Mathematical Systems, 1st edn. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  39. Schröder, B.: Ordered Sets: An Introduction with Connections from Combinatorics to Topology, 2nd edn. Birkhäuser (2016). ISBN 978-3-319-29788-0

    Google Scholar 

  40. Scott, D.: Measurement structures and linear inequalities. J. Math. Psychol. 1(2), 233–247 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. Scott, D., Suppes, P.: Foundational aspects of theories of measurement. J. Symb. Log. 23(2), 113–128 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  42. Suppes, P., Krantz, D.H., Luce, R.D., Tversky, A.: Foundations of Measurement: Geometrical, Threshold, and Probabilistic Representations, vol. 2. Academic Press, New York (1989)

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank two referees for their useful comments on an earlier draft of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Bouyssou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouyssou, D., Pirlot, M. (2020). A Note on Candeal and Induráin’s Semiorder Separability Condition. In: Bosi, G., Campión, M., Candeal, J., Indurain, E. (eds) Mathematical Topics on Representations of Ordered Structures and Utility Theory. Studies in Systems, Decision and Control, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-34226-5_6

Download citation

Publish with us

Policies and ethics