Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 263))

  • 622 Accesses

Abstract

Monotonicity assumptions of preferences are natural and useful. A strictly monotonic preference is such that an increase in even only one commodity consumption is always strictly preferred. However, when we consider a continuum of commodities, it is not easy to find examples of strictly monotonic preferences. We survey some previous results in order to show that purely strictly monotonic preferences always exist but, if the commodity space is rich enough, they cannot be continuous in any linear topology defined on the consumption set and they cannot be represented by a utility function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following Debreu [9], a commodity is a good or a service completely specified physically, temporally, and spatially. The same good or service in different dates or locations is a different commodity. The date, the location or the quality of commodities could be treated as continuous variables. A consumption plan, or a bundle, is a specification for each commodity of the quantity that she will make available or that will be made available to her, i.e, a complete listing of the quantities of her inputs and of her outputs. The commodity space is the vector space that contains all possible consumption plans. The consumption set, for a given consumer, is the set of consumption plans that are available for that consumer.

  2. 2.

    Or Zermelo’s axiom as suggested by a referee. It is also called the well ordering principle. It is equivalent to the axiom of choice. See Kelley [20] page 33 or Chap. 4 of Ciesielski [7].

  3. 3.

    See Kelley [20], pp. 48–49.

  4. 4.

    See Steen and Seebach [32], pp. 71–72.

  5. 5.

    The preference \(\succsim \) is locally insatiable if, for any point g in the consumption set X, and for any neighborhood V of f, there is another consumption \(f\in V\) such that \(f\succ g\).

  6. 6.

    This is Theorem 6 on page 153 of Monteiro [25].

  7. 7.

    Note that \(\geqslant _{K}\) is a total order on K, whereas \(\geqslant \) represent the natural partial order in the set of functions X.

  8. 8.

    Linearity guarantee that the path \(t\rightarrow (1-t)a+tb\) joining a to b is continuous.

References

  1. Araujo, A.P.: Lack of Pareto optimal allocations in economies with infinitely many commodities: the need for impatience. Econometrica 53(2), 455–461 (1985)

    Article  MathSciNet  Google Scholar 

  2. Aron, R.M., Maestre, M.: A connected metric space that is not separably connected. Contemp. Math. 328, 39–42 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bewley, T.: Existence of equilibria with infinitely many commodities. J. Econ. Theory 4, 514–540 (1972)

    Article  MathSciNet  Google Scholar 

  4. Bridges, D., Mehta, G.: Representations of Preferences Orderings. Lecture Notes in Economics and Mathematical Systems, vol. 422. Springer, Berlin (1995)

    Book  Google Scholar 

  5. Campión, M.J., Candeal, J.C., Induraín, E.: The existence of utility functions for weakly continuous preferences on a Banach space. Math. Soc. Sci. 51(2), 227–237 (2006)

    Article  MathSciNet  Google Scholar 

  6. Candeal, J.C., Hervés-Beloso, C., Induráin, E.: Some results on representation and extension of preferences. J. Math. Econ. 29(1), 75–81 (1998)

    Article  MathSciNet  Google Scholar 

  7. Ciesielski, K.: Set Theory for the Working Mathematician. Cambridge University Press (1997)

    Google Scholar 

  8. Debreu, G.: Representation of a preference ordering by a numerical function. In: Thrall, R.M., Coombs, C.H., Davis, R.L. (eds.) Decision Processes, pp. 159–165 (Wiley, New York); also in Mathematical Economics: Twenty Papers of Gerard Debreu, pp. 105–110. Cambridge University Press, Cambridge (1954)

    Google Scholar 

  9. Debreu, G.: The Theory of Value: An Axiomatic Analysis of Economic Equilibrium. Wiley, New York (1959)

    MATH  Google Scholar 

  10. Debreu, G.: Continuity properties of Paretian utility. Int. Econ. Rev. 5(3), 285–293 (1964)

    Article  Google Scholar 

  11. Eilenberg, S.: Ordered topological spaces. Am. J. Math. 63(1), 39–45 (1941)

    Article  MathSciNet  Google Scholar 

  12. Estévez, M., Hervés, C.: On the existence of continuous preference orderings without utility representations. J. Math. Econ. 24, 305–309 (1995)

    Article  MathSciNet  Google Scholar 

  13. Fleischer, I.: Numerical representation of utility. J. Soc. Ind. Appl. Math. 9(1), 48–50 (1961)

    Article  MathSciNet  Google Scholar 

  14. Herden, G.: On the existence of utility functions. Math. Soc. Sci. 17, 297–313 (1989)

    Article  MathSciNet  Google Scholar 

  15. Herden, G.: On the existence of utility functions II. Math. Soc. Sci. 18, 107–117 (1989)

    Article  MathSciNet  Google Scholar 

  16. Herden, G.: On some equivalent approaches to mathematical utility theory. Math. Soc. Sci. 29 (1), 19–31 (1995)

    Article  MathSciNet  Google Scholar 

  17. Hervés-Beloso, C., Monteiro, P.K.: Strictly monotonic preferences on continuum of goods commodity spaces. J. Math. Econ. 46(5), 725–727 (2010)

    Article  MathSciNet  Google Scholar 

  18. Hervés-Beloso, C., del Valle-Inclán Cruces, H.: Continuous preference orderings representable by utility functions. J. Econ. Surv. 33(1), 179–194 (2019)

    Article  Google Scholar 

  19. Jaffray, J.-Y.: Existence of a continuous utility function: an elementary proof. Econometrica 43, 981–983 (1975)

    Article  MathSciNet  Google Scholar 

  20. Kelley, J.: General Topology. Van Nostrand, New-York (1955)

    MATH  Google Scholar 

  21. Mas-Colell, A.: The price equilibrium existence problem in topological vector lattices. Econometrica 54(5), 1039–1054 (1986)

    Article  MathSciNet  Google Scholar 

  22. Mehta, G.: Topological ordered spaces and utility functions. Int. Econ. Rev. 18(3), 779–782 (1977)

    Article  MathSciNet  Google Scholar 

  23. Mehta, G.: Some general theorems on the existence of order preserving functions. Math. Soc. Sci. 15, 135–143 (1988)

    Article  MathSciNet  Google Scholar 

  24. Mehta, G.B.: Preference and utility. In: Barberá, S., Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory, Chapter 1, pp. 1–47. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  25. Monteiro, P.K.: Some results on the existence of utility functions on path connected spaces. J. Math. Econ. 16, 147–156 (1987)

    Article  MathSciNet  Google Scholar 

  26. Nachbin, L.: Topology and Order. D. Van Nostrand Company, Princeton, New Jersey (1965)

    MATH  Google Scholar 

  27. Pareto, V.: Course d’ economie politique. Rouge, Lausanne (1986). See also Manuale di economia politica. Societa Editrice Libraria, Milan (1906). Reprinted as Manual of Political Economy. Augustus M. Kelley, New York (1971)

    Google Scholar 

  28. Peleg, B.: Utility functions for partially ordered topological spaces. Econometrica 38, 93–96 (1970)

    Article  MathSciNet  Google Scholar 

  29. Richter, M.: Continuous and semi-continuous utility. Int. Econ. Rev. 21(2), 293–299 (1980)

    Article  Google Scholar 

  30. Schmeidler, D.: A condition for the completeness of partial preference relations. Econometrica 39(2), 403–404 (1971)

    Article  MathSciNet  Google Scholar 

  31. Slutsky, E.: Sulla Teoria del Bilancio del Consumatore. Giornale Degli Economisti 51(1), 1–26 (1915)

    MathSciNet  Google Scholar 

  32. Steen, L.A., Seebach, J.A.J.: Counterexamples in Topology. Holt, Rinehart and Winston Inc., New York (1970)

    MATH  Google Scholar 

  33. Stigler, G.J.: The development of utility theory. I. J. Polit. Econ. 58(4), 307–327 (1950)

    Article  Google Scholar 

  34. Stigler, G.J.: The development of utility theory. II. J. Polit. Econ. 58(5), 373–396 (1950)

    Article  Google Scholar 

  35. Wójcik, R.M.: The generalized Aron-Maestre comb. Houston J. Math. 42(2), 701–707 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Wold, H.: A synthesis of pure demand analysis; I, II and III. Scandinavian Actuarial J. 26, 85–118, 220–263, 69–120 (1943)

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their carefully reading and helpful comments. Hervés-Beloso acknowledges the financial support of Research Grants ECO2016-75712-P (AEI/FEDER, UE) and RGEAF-ECOBAS (Xunta de Galicia). Monteiro acknowledges the financial support of CNPq–Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hervés-Beloso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hervés-Beloso, C., Monteiro, P.K. (2020). Strictly Monotonic Preferences. In: Bosi, G., Campión, M., Candeal, J., Indurain, E. (eds) Mathematical Topics on Representations of Ordered Structures and Utility Theory. Studies in Systems, Decision and Control, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-34226-5_10

Download citation

Publish with us

Policies and ethics