Skip to main content

Contribution of Genetic Resources to Grain Storage Protein Composition and Wheat Quality

  • Chapter
  • First Online:
Book cover Wheat Quality For Improving Processing And Human Health

Abstract

The technological quality of wheat flour is defined by a range of dough characteristics relevant to the breadmaking processes and practices of individual countries and for particular products. The influence of storage protein diversity on wheat quality has been widely documented in the last three decades. The present chapter focuses on several aspects of wheat quality that merit more attention. The huge genetic diversity of wheat storage proteins means that all the possible allelic combinations and their interactions are too numerous to be tested in terms of their influence on the major quality parameters. However it is still relevant to describe the variation in rheological and viscoelastic properties of gluten in relation to its component proteins, glutenin and gliadin. Although gluten plays a major role in determining the properties of dough, the abundance of the two major storage protein fractions does not solely explain the observed variation in those properties. We therefore examine the influence of some genetic factors, including those affecting the protein composition, on the variation in the glutenin polymer sizes. Some examples will be given to illustrate how end-use quality can be improved by taking advantage of the available genetic resources in parallel with molecular genome analyses with the dual aim of widening the scope of characteristics that can be harnessed in breeding and ensuring consistent wheat quality in changing agro-climatic situations. The known alleles of the major genes are highlighted in the context of the challenges that the research community is facing regarding wheat allele nomenclature, exchange of gene bank material and the numerous quality attributes of interest. Finally, important research objectives are proposed for breeding future wheats with grain protein quality and technological properties tailored for different food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AACC (2000). Approved methods of the American Association of Cereal Chemists, 10th Edition. American Association of Cereal Chemists, Incorporated, St. Paul, Minnesota.

    Google Scholar 

  • Aguiriano E, Ruiz M, Fité R, Carrillo, JM (2008) Genetic variation for glutenin and gliadins associated with quality in durum wheat Triticum turgidum L. ssp. turgidum landraces from Spain. Spanish Journal of Agricultural Research 6: 599.

    Article  Google Scholar 

  • Altenbach SB, DuPont FM, Kothari KM et al (2003). Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science 37: 9–20.

    Article  Google Scholar 

  • An X, Li Q, Yan Y, Xiao Y, Hsam, SLK, Zeller FJ (2005) Genetic diversity of European spelt wheat Triticum aestivum ssp spelta L. em. Thell. revealed by glutenin subunit variations at the Glu-1 and Glu-3 loci. Euphytica 146: 193–201.

    Article  CAS  Google Scholar 

  • Ayala M, Guzmán C, Peña RJ, Alvarez JB (2016) Diversity of phenotypic plant and grain morphological and genotypic glutenin alleles in Glu-1 and Glu-3 loci traits of wheat landraces Triticum aestivum from Andalusia Southern Spain. Genetic Resources and Crop Evolution 63: 465–475.

    Article  Google Scholar 

  • Babay E, Hanana M, Mzid R, Slim-Amara H, Carrillo JM, Rodríguez-Quijano M (2015) Influence of allelic prolamin variation and localities on durum wheat quality. Journal of Cereal Science 63: 27–34.

    Article  CAS  Google Scholar 

  • Bellil I, Chekara Bouziani, M, Khelifi, D (2012) Genetic diversity of high and low molecular weight glutenin subunits in Saharan bread and durum wheats from Algerian oases. Czech Journal of Genetics and Plant Breeding 48: 23–32.

    Article  CAS  Google Scholar 

  • Bellil I, Hamdi O, Khelifi D (2014) Diversity of five glutenin loci within durum wheat Triticum turgidum L. ssp. durum Desf. Husn. germplasm grown in Algeria. Plant Breeding 133: 179–183.

    Article  CAS  Google Scholar 

  • Blumenthal CS, Bekes F, Batey IL, Wrigley CW (1991) Interpretation of grain quality results from wheat variety trials with reference to high temperature stress. Australian Journal of Agricultural Research 42: 325–334.

    Article  Google Scholar 

  • Branlard G, Autran JC, Monneveux P (1989) High molecular weight glutenin subunit in durum wheat T. durum. Theoretical and Applied Genetics 78: 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Branlard G, Dardevet M. (1994) A null Gli-D1 allele with a positive effect on bread wheat quality. Journal of Cereal Science 20: 235–244.

    Article  Google Scholar 

  • Branlard G, Lesage VS, Bancel E, Martre P, Méleard B, Rhazi L (2015) Coping with wheat quality in a changing environment – proteomics evidence for stress caused by environmental changes. In “Advances in Wheat Genetics: From Genome to Field. Proceedings of the 12th International Wheat Genetics Symposium” Y. Ogihara, S. Takumi, H. Handa Eds, Yokohama, Japan ISBN: 978–4–431-55674-9, 255–264.

    Google Scholar 

  • Branlard G, Méléard B, Oury FX, Rhazi L, Boinot N (2013) Compréhension du rapport Ténacité/ Extensibilité et du volume du pain. In : « Synthèse du programme de recherche FSOV, actes de la rencontre scientifique 15 mars 2013, Paris 18–26.

    Google Scholar 

  • Branlard G, Metakovsky EV (2006) Chapter 4. Some Gli alleles related to common-wheat dough quality in ‘Gliadin and Glutenin: The Unique Balance of Wheat Quality’, AACC St Paul MN USA, 115–139.

    Google Scholar 

  • Brites C, Carrillo JM (2000) Inheritance of gliadin and glutenin proteins in four durum wheat crosses. Cereal Research Communication, 28: 239–246.

    Article  CAS  Google Scholar 

  • Brites C, Carrillo JM (2001) Influence of High Molecular Weight HMW and Low Molecular Weight LMW glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chemistry 78: 59–63.

    Article  CAS  Google Scholar 

  • Brönneke V, Zimmermann G, Killermann B, 2000. Effect of high molecular weight glutenins and D-zone gliadins on bread making quality in German wheat varieties. Cereal Res Commun. 28:187–194.

    Article  Google Scholar 

  • Burnouf T, Bouriquet R (1980) Glutenin subunits of genetically related European hexaploid wheat cultivars: their relation to bread-making quality. Theoretical and Applied Genetics 58: 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Caballero L, Peña RJ, Martín LM, Alvarez JB (2010) Characterization of Mexican Creole wheat landraces in relation to morphological characteristics and HMW glutenin subunit composition. Genetic Resources and Crop Evolution 57: 657–665.

    Article  CAS  Google Scholar 

  • Cao S, Li Z, Gong C, Xu H, Yang R, Hao S, et al. (2014) Identification and characterization of high-molecular-weight glutenin subunits from Agropyron intermedium. PLoS One 9: e87477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo JM (1995) Variability for glutenin proteins in spanish durum wheat landraces. in durum wheat quality in the Mediterranean region, CIHEAM, 143–147.

    Google Scholar 

  • Carrillo JM, Martinez MC, Moita Brites C, Nieto-Taladriz MT, Vázquez JF (2000) Relationship between endosperm proteins and quality in durum wheat Triticum turgidum L. var. durum. Options Méditerranéennes 40: 463–467.

    Google Scholar 

  • Cherdouh A, Khelifi D, Carrillo JM, Nieto-Taladriz MT (2005) The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars. Plant Breeding 124: 338–342.

    Article  CAS  Google Scholar 

  • Cho SW, Cho K, Bang G, Park CS (2018) Molecular profiling of a y-type high molecular weight glutenin subunit at Glu-D1 locus from a North Korean landrace wheat Triticum aestivum L., Plant Biotechnology Reports 12:139–148.

    Article  Google Scholar 

  • Cho SW, Roy SK, Chun J-B, Cho K, Park CS (2017) Overexpression of the Bx7 high molecular weight glutenin subunit on the Glu-B1 locus in a Korean wheat landrace. Plant Biotechnology Reports 11:97–105.

    Article  Google Scholar 

  • Cong H, Takata K, Ikeda T, Yanaka M, Fujimaki H, Nagamine T (2007) Characterization of a novel high-molecular-weight glutenin subunit pair 2.6+12 in common wheat landraces in the Xinjiang Uygur autonomous district of China. Breeding Science 57: 253–255.

    Article  CAS  Google Scholar 

  • Dai S, Yan ZH, Wei YM, Zheng YL (2004) Allelic variations of high molecular weight glutenin subunits HMW-GS in Tibetan wheat. Acta Agriculturae Boreali-Occidentalis Sinica 17: 5–11.

    Google Scholar 

  • De Santis MA, Giuliani MM, Giuzio L, De Vita P, Lovegrove A, Shewry PR, et al. (2017) Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. European Journal of Agronomy 87: 19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vita P, Li Destri Nicosia O, Nigro F, Platani C, Riefolo C, Di Fonzo N, et al. (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy 26: 39–53.

    Article  Google Scholar 

  • Elyadini M, Labhilili M, Bentata F, Azeqour M, Taghouti M, Kahama I, et al. (2014) Characterization of new allelic variation for glutenin in EMS—mutant durum wheat population (Triticum turgidum L. subsp. durum (Desf.)) Journal of Life Sciences 8: 880–888.

    Google Scholar 

  • Fang J, Liu Y, Luo J, Wang Y, Shewry PR, He G (2009) Allelic variation and genetic diversity of high molecular weight glutenin subunit in Chinese endemic wheats Triticum aestivum L. Euphytica 166: 177–182.

    Article  CAS  Google Scholar 

  • Finney KF (1943) Fractionating and reconstituting techniques as tools in wheat flour research. Cereal Chemistry 20: 381–396.

    CAS  Google Scholar 

  • Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. Evolutionary Biology 27: 51–94.

    Google Scholar 

  • Giraldo P, Rodriguez-Quijano M, Simon C, Vazquez JF, Carrillo JM (2010) Allelic variation in HMW glutenins in Spanish wheat landraces and their relationship with bread quality. Spanish Journal of Agricultural Research 8: 1012–1023.

    Article  Google Scholar 

  • Giraldo P, Royo C, González M, Carrillo JM, Ruiz M (2016) Genetic diversity and association mapping for agromorphological and grain quality traits of a structured collection of durum wheat landraces including subsp. durum, turgidum and diccocon. PLoS One 11.

    Google Scholar 

  • Goel S, Yadav M, Singh K, Jaat RS, Singh NK (2018). Exploring diverse wheat germplasm for novel alleles in HMW-GS for bread quality improvement. Journal of Food Science and Technology -Mysore 55: 3257–3262.

    Article  CAS  Google Scholar 

  • Gregová E, Tisová V, Kraic J (1997) Genetic variability at the Glu-1 loci in old and modern wheats Triticum aestivum L. cultivated in Slovakia. Genetic Resources and Crop Evolution 44: 301–306.

    Article  Google Scholar 

  • Gregová E, Hermuth J, Kraic J, Dotlačil L (1999) Protein heterogeneity in European wheat landraces and obsolete cultivars. Genetic Resources and Crop Evolution 46: 521–528.

    Article  Google Scholar 

  • Gregová E, Hermuth J, Kraic J, Dotlačil L. (2006) Protein heterogeneity in European wheat landraces and obsolete cultivars: Additional information II. Genetic Resources and Crop Evolution 53: 867–871.

    Article  CAS  Google Scholar 

  • Gregová E, Medvecká E, Jómová K, Sliková S (2012) Characterization of durum wheat Triticum durum desf. quality from gliadin and glutenin protein composition. Journal of Microbiology, Biotechnology and Food Sciences 1: 610.

    Google Scholar 

  • Guo BH, Wang ZN, Fang R, Li HJ, Pei CJ (1993) HMW glutenin variation in landraces of wheat in Northern China. In 8th International Wheat Genetics Symposium, 20–25 July, Beijing, China, Vol. II, 725–729.

    Google Scholar 

  • Guo X, Guo J, Li X, Yang X, Li L (2010) Molecular characterization of two novel Glu-D1-encoded subunits from Chinese wheat Triticum aestivum L. landrace and functional properties of flours possessing the two novel subunits. Genetic Resources and Crop Evolution 57: 1217–1225.

    Article  CAS  Google Scholar 

  • Hamdi O, Bellil I, Branlard G, Khelifi D (2010). Genetic Variation and Geographical Diversity for Seed Storage Proteins of Seventeen Durum Wheat Populations Collected in Algeria. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(2) special Issue, 22–32. doi: https://doi.org/10.15835/nbha3824738.

  • He ZH, Liu L, Xia XC, Liu JJ, Peña RJ (2005) Composition of HMW and LMW Glutenin Subunits and Their Effects on Dough Properties, Pan Bread, and Noodle Quality of Chinese Bread Wheats. Cereal Chemistry 82: 345–350.

    Article  CAS  Google Scholar 

  • Henkrar F, El-Haddoury J, Iraqi D, Bendaou N, Udupa SM (2017) Allelic variation at high-molecular weight and low-molecular weight glutenin subunit genes in Moroccan bread wheat and durum wheat cultivars.3 Biotech 7.doi: https://doi.org/10.1007/s13205-017-0908

  • Ibba MI, Kiszonas, AM, Guzmán C, Morris CF (2017) Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties. Journal of Cereal Science 74: 263–271.

    Article  CAS  Google Scholar 

  • Igrejas G, Branlard G, Gateau I, Carnide V, Guedes-Pinto H. (1997) Storage protein diversity within the Old Portuguese bread wheat ‘Barbela’ population. Journal of Genetics and Plant Breeding 51: 167–173.

    CAS  Google Scholar 

  • Igrejas G, Guedes-Pinto H, Carnide V, Branlard G (1999) The high and low molecular weight glutenin subunits and ω-gliadin composition of bread and durum wheats commonly grown in Portugal. Plant Breeding 118: 297–302.

    Article  CAS  Google Scholar 

  • Igrejas G, Guedes-Pinto H, Carnide V, Clement J, Branlard G (2002) Genetical, biochemical and technological parameters associated with biscuit quality. II. Prediction using storage proteins and indirect tests in a soft wheat population. Journal of Cereal Science 36: 187–197.

    Article  CAS  Google Scholar 

  • Igrejas G, Juhász A, Gianibelli MC, Gale KR, Rahman S. (2009) Low-molecular-weight glutenins in durum wheat: analysis of Glu-A3 alleles using PCR markers. Plant Breeding 129: 574–577.

    Google Scholar 

  • Ikeda TM, Branlard G, Peña RJ, Takata K, Liu L, He Z, et al. (2008) International collaboration for unifying Glu-3 nomenclature system in common wheat in: “The 11th International Wheat Genetics Symposium 2008” Brisbane Aust. Sydney University Press.

    Google Scholar 

  • Janni M, Cadonici S, Bonas U, Grasso A, Dahab AAD, Visioli G, et al. (2018) Gene-ecology of durum wheat HMW glutenin reflects their diffusion from the center of origin. Scientific Reports 8, 1–9.

    Google Scholar 

  • Jaradat AA (2013) Wheat landraces: a mini review. Emirates Journal of Food and Agriculture 1: 20–29.

    Article  Google Scholar 

  • Jiang QT, Ma J, Wei YM, Liu YX, Lan XJ, Dai SF, et al. (2012) Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding. BMC Plant Biology 12: 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang QT, Zhang XW, Ma J, Wei L, Zhao S, Zhao QZ, et al. (2014) Characterization of high-molecular-weight glutenin subunits from Eremopyrum bonaepartis and identification of a novel variant with unusual high molecular weight and altered cysteine residues. Planta 239: 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Yan J, Pena RJ, Xia XC, Morgounov A, Han LM, et al. (2011) Molecular detection of high- and low-molecular-weight glutenin subunit genes in common wheat cultivars from 20 countries using allele-specific markers. Crop and Pasture Science 62: 746–754.

    Article  CAS  Google Scholar 

  • Jin H, Zhang Y, Li GY, Mu PY, Fan ZR, Xia XC, et al. (2013) Effects of allelic variation of HMW-GS and LMW-GS on Mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. Journal of Cereal Science 57: 146–152.

    Article  CAS  Google Scholar 

  • Johansson E 1996. Quality evaluation of D-zone omega gliadins in wheat. Plant Breed 115:57–62.

    Article  CAS  Google Scholar 

  • Johansson E, Prieto-Linde ML, Gissén C (2008) Influences of weather, cultivar and fertilizer rate on grain protein polymer accumulation in field-grown winter wheat, and relations to grain water content and falling number. Journal of the Science of Food and Agriculture 8811: 2011–2018.

    Article  CAS  Google Scholar 

  • Juhász A, Larroque OR, Tamás L, Hsam SLK, Zeller FJ, Békés F, et al. (2003) Bánkúti 1201 - an old Hungarian wheat variety with special storage protein composition. Theoretical and Applied Genetics 107: 697–704.

    Article  CAS  PubMed  Google Scholar 

  • Kabbaj H, Sall AT, Al-Abdallat A, Geleta M, Amri A, Filali-Maltouf A, et al. (2017) Genetic diversity within a global panel of durum wheat Triticum durum landraces and modern germplasm reveals the history of alleles exchange. Frontiers in Plant Science 8. 1277.

    Google Scholar 

  • Katyal M, Virdi AS, Singh N, Kaur A, Rana JC, Kumari J (2018) Diversity in protein profiling, pasting, empirical and dynamic dough rheological properties of meal from different durum wheat accessions. Journal of Food Science and Technology 55: 1256–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labuschagne MT, Mkhatywa N, Wentzel B, Johansson E, van Biljon A (2014) Tocochromanol concentration, protein composition and baking quality of white flour of South African wheat cultivars. Journal of Food Composition and Analysis 33: 127–131.

    Article  CAS  Google Scholar 

  • Lafiandra D, D’Ovidio R, Porceddu E, Margiotta B, Colaprico G (1993) New data supporting high Mr glutenin subunit 5 as the determinant of quality differences among the pairs 5+10 vs 2+12. Journal of Cereal Science 18: 197–205.

    Article  CAS  Google Scholar 

  • Lan QX, Lan Q, Feng B, Xu Z, Zhao G, Wang T (2013) Molecular cloning and characterization of five novel low molecular weight glutenin subunit genes from Tibetan wheat landraces Triticum aestivum L. Genetic Resources and Crop Evolution 60: 799–806.

    Article  CAS  Google Scholar 

  • Lawrence GJ, MacRitchie F, Wrigley CW (1988) Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. Journal of Cereal Science 7: 109–112.

    Article  CAS  Google Scholar 

  • Lee S, Choi Y-M, Lee M-C, Hyun DY, Oh S, Jung Y 2018. Geographical comparison of genetic diversity in Asian landrace wheat (Triticum aestivum L.) germplasm based on high-molecular-weight glutenin subunits. ). Genet Resour Crop Evol 65:1591–1602.

    Article  CAS  Google Scholar 

  • Lesage VS, Merlino M, Chambon C, Bouchet, B, Marion, D, Branlard, G. (2012) Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. Journal of Experimental Botany 63: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  • Lesage V, Rhazi L, Aussenac A, Meleard B, Branlard G (2013) Effects of HMW- & LMW-glutenins and grain hardness on size of gluten polymers. In: He Z, Wang D eds Wheat Gluten 2012, Proceedings of the 11th international wheat gluten workshop, Beijing, 200–205.

    Google Scholar 

  • Li D, Jin H, Zhang K, Wang Z, Wang F, Zhao Y, et al. (2018) Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat. The Plant Journal 95: 414–426.

    Google Scholar 

  • Li W, Wan Y, Liu Z, Liu K, Liu X, Li B, et al. (2004) Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species. Theoretical and Applied Genetics 109: 1093–1104.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang C, Sui X, Fan Q, Li G, Chu X (2009) Genetic variation of wheat glutenin subunits between landraces and varieties and their contributions to wheat quality improvement in China. Euphytica 169: 159–168.

    Article  CAS  Google Scholar 

  • Li Y, An X, Yang R, Guo X, Yue G, Fan R, et al. (2015) Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality. Molecular Plant 8: 332–334.

    Article  CAS  PubMed  Google Scholar 

  • Li Y-F, Wu Y, Hernandez-Espinosa N, Peña RJ (2013) The influence of drought and heat stress on the expression of end-use quality parameters of common wheat. Journal of Cereal Science 57: 73–78.

    Article  CAS  Google Scholar 

  • Li ZX, Zhang XQ, Zhang HG, Cao SH, Wang D, Hao S, et al. (2008) Isolation and characterization of a novel variant of HMW glutenin subunit gene from the St genome of Pseudoroegneria stipifolia. Journal of Cereal Science 47: 429–437.

    Article  CAS  Google Scholar 

  • Liang D, Tang J, Pena RJ, Singh RP, He X, Shen X, et al. (2010) Characterization of CIMMYT bread wheats for high and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172: 235–250.

    Article  CAS  Google Scholar 

  • Liu L, He Z, Yan J, Zhang Y, Xia X, Peña RJ (2005) Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B.1R translocation, and their effects on Mixographic properties in Chinese bread wheats. Euphytica 142: 197–204.

    Article  CAS  Google Scholar 

  • Liu L, Ikeda TM, Branlard G, Pena RJ, Rogers WJ, Lerner SE, et al. (2010) Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biology 10: 1–24.

    Article  CAS  Google Scholar 

  • Liu S, Gao X, Xia G (2008) Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Theoretical and Applied Genetics 116: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xiong Z-Y, He Y-G, Shewry PR, He G-Y (2007) Genetic diversity of HMW glutenin subunit in Chinese common wheat Triticum aestivum L. landraces from Hubei province. Genetic Resources and Crop Evolution 54: 865–874.

    Article  CAS  Google Scholar 

  • Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D (2003) Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theoretical and Applied Genetics 106: 1368–1378.

    Article  CAS  PubMed  Google Scholar 

  • Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends in Plant Science 19: 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, et al. (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal Of Experimental Botany 66: 3477–3486.

    Article  CAS  PubMed  Google Scholar 

  • MacRitchie F (2014) Theories of glutenin/dough systems. Journal of Cereal Science 60: 4–6.

    Article  CAS  Google Scholar 

  • Malik AH, Kuktaite R Johansson E (2013) Combined effect of genetic and environmental factors on the accumulation of proteins in the wheat grain and their relationship to bread-making quality. Journal of Cereal Science 572: 170–174.

    Article  CAS  Google Scholar 

  • Melnikova NV, Ganeva GD, Popova ZG, Landjeva SP, Kudryavtsev AM (2010) Gliadins of Bulgarian durum wheat Triticum durum Desf. landraces: genetic diversity and geographical distribution. Genetic Resources and Crop Evolution 57: 587–595.

    Article  Google Scholar 

  • Metakovsky, E.V. 1991a. Gliadin allele identification in common wheat. 2.Catalogue of gliadin alleles in common wheat. J. Genet. & Breed. 45:325–344.

    Google Scholar 

  • Metakovsky EV, Graybosch RA, 2006. Chapter 3. Gliadin Alleles in Wheat: Identification and Applications in ‘Gliadin and Glutenin: The Unique Balance of Wheat Quality’, AACC St Paul MN USA, Page 85–114.

    Google Scholar 

  • Metakovsky, E.V. Novoselskata AY, 1991b Gliadin allele identification in common wheat. 1 Methodological aspects of the analysis of gliadin pattern by one-dimensional polyacrylamide gel electrophoresis. J. Genet. & Breed. 45:317–324.

    Google Scholar 

  • Metakovsky EV (2015) Wheat storage proteins: genes, inheritance, variability, mutations, phylogeny, seed production, flour, quality, LAP Lambert Acad. Publishing, Saarbrücken, Deutschland, Germany, pp. 320 (in Russian with English abstract).

    Google Scholar 

  • Metakovsky EV, Melnik V, Rodriguez-Quijano M, Upelniek V, Carrillo JM (2018) A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. Crop Journal 6: 628–641.

    Article  Google Scholar 

  • Mir Ali N, Arabi MIE, Al- Safadi B (1999) Frequencies of high and low molecular weight glutenin subunits in durum wheat grown in Syria. Cereal Research Communications 27: 301–305.

    Article  Google Scholar 

  • Moragues M, Zarco-Hernández J, Moralejo MA, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum Convar. durum Desf. MacKey] from the Mediterranean basin. Genetic Resources and Crop Evolution 53: 993–1002.

    Article  CAS  Google Scholar 

  • Morgunov AI, Peña RJ, Crossa J, Rajaram S. (1993) Worldwide distribution of Glu-1 alleles in bread wheat. Journal of Genetics and Plant Breeding 47: 53–60.

    Google Scholar 

  • Muccilli V, Cunsolo V, Saletti R, Foti S, Margiotta B, Scossa F, et al. (2010) Characterisation of a specific class of typical low molecular weight glutenin subunits of durum wheat by a proteomic approach. Journal of Cereal Science 51:134–139.

    Article  CAS  Google Scholar 

  • Naghavi MR, Monfared SR, Ahkami AH, Ombidbakhsh MA (2009) Genetic variation of durum wheat landraces and cultivars using morphological and protein markers. World Academy of Science, Engineering and Technology 3: 33–35.

    Google Scholar 

  • Nakamura H (2001) Genetic diversity of high-molecular-weight glutenin subunit compositions in landraces of hexaploid wheat from Japan. Euphytica 120: 227–234.

    Article  CAS  Google Scholar 

  • Nieto-Taladriz MT, Ruiz M, Martínez MC, Vázquez JF, Carrillo JM (1997) Variation and classification of B low-molecular-weight glutenin subunit alleles in durum wheat. Theoretical and Applied Genetics 95: 1155–1160.

    Article  CAS  Google Scholar 

  • Payne PI, Corfield KG, Blackman JA, (1979) Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theoretical and Applied Genetics 55: 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications 11: 29–35.

    Google Scholar 

  • Peng YC, Yu K, Zhang Y, Islam S, Sun D, Ma W (2015) Two novel y-type high molecular weight glutenin genes in Chinese wheat landraces of the Yangtze-River region. Plos One, 1011: e0142348.

    Article  CAS  Google Scholar 

  • Peng YC, Yu Z, Islam S, Zhang Y, Wang X, Lei Z, et al. (2016) Allelic variation of LMW-GS composition in Chinese wheat landraces of the Yangtze-River region detected by MALDI-TOF-MS. Breeding Science 66: 646–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pignone D, De Paola D, Rapanà N, Janni M (2015) Single seed descent: a tool to exploit durum wheat Triticum durum Desf. genetic resources. Genetic Resources and Crop Evolution 62: 1029–1035.

    Article  Google Scholar 

  • Raciti CN, Doust MA, Lombardo GM, Boggini G, Pecetti L (2003) Characterization of durum wheat mediterranean germplasm for high and low molecular weight glutenin subunits in relation with quality. European Journal of Agronomy 19: 373–382.

    Article  CAS  Google Scholar 

  • Rasheed A, Jin H, Xiao Y, Zhang Y, Hao Y, Zhang Y, et al. (2019) Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput markers. Journal of Cereal Science 85: 305–309.

    Google Scholar 

  • Redaelli R, Ng PKW, Ward RW (1997) Electrophoretic characterization of storage proteins of 37 Chinese landraces of wheat. Journal of Genetics and Breeding 51: 239–246.

    CAS  Google Scholar 

  • Ribeiro JM, Bancel E, Faye A, Dardevet M, Ravel C, Branlard G, et al. (2013a) Proteogenomic characterization of novel x-type high molecular weight glutenin subunit 1Ax1.1. International Journal of Molecular Sciences 14: 5650–5667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro M, Carvalho C, Carnide V, Guedes-Pinto H, Igrejas G (2011) Towards allelic diversity in the storage proteins of old and currently growing tetraploid and hexaploid wheats in Portugal. Genetic Resources and Crop Evolution 58: 1051–1073.

    Article  CAS  Google Scholar 

  • Ribeiro M, Nunes-Miranda JD, Branlard G, Carrillo JM, Rodriguez-Quijano M, Igrejas G (2013) One hundred years of grain Omics: Identifying the glutens that feed the world. Journal of Proteome Research 12: 4702–4716.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Quijano M, Vásquez JF, Carrillo JM (1990) Variation of high molecular weight glutenin subunits in Spanish landraces of Triticum aestivum ssp. vulgare and ssp. spelta. Journal of Genetics and Breeding 44: 121–126.

    Google Scholar 

  • Rodriguez-Quijano M, Vásquez JF, Moita-Brites C, Carrillo JM (1998) Allelic variation of HMW glutenin subunits in Portuguese landraces of Triticum aestivum ssp vulgare. Journal of Genetics and Breeding 52: 95–98.

    CAS  Google Scholar 

  • Ruiz M, Bernal G, Giraldo P (2018) An update of low molecular weight glutenin subunits in durum wheat relevant to breeding for quality. Journal of Cereal Science, 83: 236–244.

    Article  CAS  Google Scholar 

  • Ruiz M, Carrillo JM (1993) Linkage relationships between prolamin genes on chromosome 1A and chromosome 1B of durum wheat. Theoretical and Applied Genetics 87: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz M, Metakovsky EV, Rodriguez-Quijano M, Vazquez JF, Carrillo JM (2002a) Assessment of storage protein variation in relation to some morphological characters in a sample of Spanish landraces of common wheat Triticum aestivum L. ssp aestivum. Genetic Resources and Crop Evolution 49: 371–382.

    Article  Google Scholar 

  • Ruiz M, Metakovsky EV, Rodriguez-Quijano M, Vazquez JF, Carrillo JM (2002b) Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. Field Crops Research 79: 185–196.

    Article  Google Scholar 

  • Ruiz, M., Giraldo P, Royo C, Villegas D, Aranzana M J, Carrillo J M (2012) Diversity and genetic structure of a collection of Spanish durum wheat landraces. Crop Science, 52: 2262–2275.

    Article  Google Scholar 

  • Shao H, Liu T, Ran C-F, Li L-Q, Yu J, Gao X, et al. (2015) Isolation and molecular characterization of two novel HMW-GS genes from Chinese wheat Triticum aestivum L. landrace Banjiemang. Genes & Genomics 37: 45–53.

    Article  CAS  Google Scholar 

  • Shewry PR, Gilbert SMA, Savage WJ, Tatham AS, Wan YF, Belton PS, et al. (2003a) Sequence and properties of HMW subunit 1Bx20 from pasta wheat Triticum durum which is associated with poor end use properties. Theoretical and Applied Genetics 106: 744–750.

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003b) Genetics of wheat gluten proteins. Advanced Genetics 49: 111–184.

    Article  CAS  Google Scholar 

  • Sourour A, Salah B, Afef O, Zoubeir C, Younes B (2016) Variability of HMW and LMW glutenin subunits in durum wheat Triticum Durum Desf. Journal of the Institute of Agriculture and Animal Science 4: 10–13.

    Google Scholar 

  • Southan M, MacRitchie F (1999) Molecular weight distribution of wheat proteins. Cereal Chemistry 76: 827–836.

    Article  CAS  Google Scholar 

  • Sozinov IA, Poperelya FA, Stacanova AI (1974) Use of electrophoresis of gliadin for selection of wheat by quality. In Russian, Vestnik Navki, 7: 99–108.

    Google Scholar 

  • Sun X, Hu S, Liu X, Qian W, Hao S, Zhang A, et al. (2006) Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theoretical and Applied Genetics 113: 631–641.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Pu Z, Dai S, Pu X, Liu D, Wu B, et al. (2014) Characterization of y-type high-molecular-weight glutenins in tetraploid species of Leymus. Development Genes And Evolution 224: 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Tahir M, Turchetta T, Anwar R, Lafiandra D (1996) Assessment of genetic variability in hexaploid wheat landraces of Pakistan based on polymorphism for HMW glutenin subunits. Genetic Resources and Crop Evolution 43: 211–220.

    Article  Google Scholar 

  • Tanaka H, Tomita M, Tsujimoto H, Yasumuro Y (2003) Limited but specific variations of seed storage proteins in Japanese common wheat Triticum aestivum L. Euphytica 132: 167–174.

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327: 818–822.

    Article  CAS  PubMed  Google Scholar 

  • Tohver M (2007) High Molecular Weight HMW glutenin subunit composition of some Nordic and Middle European wheats. Genetic Resources and Crop Evolution 54: 67–81.

    Article  CAS  Google Scholar 

  • Triboï E, Martre P, Triboï-Blondel AM (2003) Environmentally-induced changes of protein composition for developing grains of wheat are related to changes in total protein content. Journal Of Experimental Botany 54: 1731–1742.

    Article  CAS  PubMed  Google Scholar 

  • Van Lill D, Smith MF (1997) A quality assurance strategy for wheat Triticum aestivum L. where growth environment predominates. South African J Plant Soil 14: 183–191.

    Article  Google Scholar 

  • Wall JS (1979) The role of wheat protein in determining the baking quality. In: Recent advances in biochemistry of cereals. Laidman D.L. and Wyn-Jones R.G. eds Academic, London, 275–311.

    Google Scholar 

  • Wan YF, Yan Z, Liu K, Zheng YL, D’Ovidio R, Shewry PR, et al. (2005) Comparative analysis of the D genome-encoded high molecular weight subunits of glutenin. Theoretical and Applied Genetics 111: 1183–1190.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhang K, Dong L, Dong Z, Li Y, Hussain A, et al. (2018) Molecular and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives. Crop Journal 6: 68–81.

    Article  Google Scholar 

  • Wang DW, Li D, Wang J, Zhao Y, Wang Z, Yue G, et al. (2017a) Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Scientific Reports 7: 44609.

    Google Scholar 

  • Wang Z, Li Y, Yang Y, Liu X, Qin H, Dong Z, et al. (2017b) New insight into the function of wheat glutenin proteins as investigated with two series of genetic mutants. Scientific Reports 7: 3428.

    Google Scholar 

  • Wang S, Yu Z, Cao M, Shen X, Li N, Li X, et al. (2013) Molecular mechanisms of HMW glutenin subunits from 1Sl genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS One 8: e58947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrigley C, Asenstorfer R, Batey I, Cornish G, Day L, Mares D, et al. (2009) The biochemical and molecular basis of wheat quality. In: Carver BF ed Wheat science and trade. Wiley, Iowa, USA.

    Google Scholar 

  • Xynias IN, Kozub NA, Sozinov IA (2011) Analysis of hellenic durum wheat Triticum turgidum L. var. durum germplasm using gliadin and high-molecular-weight glutenin subunit loci. Cereal Research Communications 39: 415–425.

    Article  Google Scholar 

  • Yang Y, Li S, Zhang K, Dong Z, Li Y, An X, Chen J, et al. (2014). Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Theoretical and Applied Genetics 127: 359–372.

    Article  CAS  PubMed  Google Scholar 

  • Yasmeen F, Khurshid H, Ghafoo A (2015) Genetic divergence for high-molecular weight glutenin subunits HMW-GS in indigenous landraces and commercial cultivars of bread wheat of Pakistan. Genetics and Molecular Research 14: 4829–4839.

    Article  CAS  PubMed  Google Scholar 

  • Zeven AC (1998) Landraces: A review of definitions and classifications. Euphytica 104: 127–139.

    Article  Google Scholar 

  • Zhang PP, He ZH, Zhang Y, Xia XC, Liu JJ, Yan J, et al. (2007) Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chemistry 84:370–378.

    Article  CAS  Google Scholar 

  • Zhang ZJ (1995) Evidence of durable resistance in nine Chinese land races and one Italian cultivar of Triticum aestivum to Puccinia striiformis. European Journal of Plant Pathology 101: 405–409.

    Article  Google Scholar 

  • Zheng W, Peng Y, Ma J, Appels R, Sun D, Ma W (2011) High frequency of abnormal high molecular weight glutenin alleles in Chinese wheat landraces of the Yangtze-River region. Journal of Cereal Science 54: 401–408.

    Article  CAS  Google Scholar 

  • Zilić S, Barać M, Pešić M, Dodig D, Ignjatović-Micić D (2011) Characterization of proteins from grain of different bread and durum wheat genotypes. International Journal of Molecular Sciences 12: 5878–5894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Branlard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Branlard, G. et al. (2020). Contribution of Genetic Resources to Grain Storage Protein Composition and Wheat Quality. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat Quality For Improving Processing And Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3_4

Download citation

Publish with us

Policies and ethics