Skip to main content

Abstract

The dietary intake of fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs) can promote gut health, but also trigger gastrointestinal disorders. Wheat as a staple food is considered a major source of FODMAPs in the daily diet. The most abundant FODMAPs in the wheat grain are fructans, which accumulate during plant development in vegetative tissues and are remobilized during grain filling and synthesized in the developing grain. Abiotic stress can foster the accumulation of fructans. Quantification of fructans and/or other FODMAPs is usually carried out by commercial enzymatic assays or by chromatographic methods. There is evidence for genetic variation in fructan accumulation, remobilization efficiency and concentration in the grain. Heritabilities were shown to be moderate to high. Therefore, breeding for low fructan and/or FODMAPs levels in the grain is feasible and was already successfully demonstrated. A significant reduction in FODMAPs of wheat products, however, can be realised by processing. Therefore, long proofing times, especially sour dough fermentation, are most efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. The American Journal of Clinical Nutrition 82: 471–476.

    Article  CAS  PubMed  Google Scholar 

  • Abrams SA, Hawthorne KM, Aliu O, Hicks PD, Chen Z, Griffin IJ (2007) An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. The Journal of Nutrition 137: 2208–2212.

    Article  CAS  PubMed  Google Scholar 

  • Andersen R, Sørensen A (2000) Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography A 897: 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Fransson G, Tietjen M, Åman P (2009) Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. Journal of Agricultural and Food Chemistry 57: 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  • Andersson AAM, Andersson R, Piironen V, Lampi A-M, Nyström L, Boros D, Frás A, Gebruers K, Courtin CM, Delcour JA, Rakszegi M, Bedo Z, Ward JL, Shewry PR, Åman P (2013) Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry 136: 1243–1248.

    Article  CAS  PubMed  Google Scholar 

  • Armentia A, Martín S, Diaz-Perales A, Palacín A, Tordesillas L, Herrero M, Martín-Armentia M (2012) A possible hypoallergenic cereal in wheat food allergy and baker’s asthma. American Journal of Plant Sciences 3: 1779–1781.

    Article  CAS  Google Scholar 

  • Bach Knudsen KE (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology 67: 319–338.

    Article  CAS  Google Scholar 

  • Benítez V, Esteban RM, Moniz E, Casado N, Aguilera Y, Mollá E (2018) Breads fortified with wholegrain cereals and seeds as source of antioxidant dietary fibre and other bioactive compounds. Journal of Cereal Science 82: 113–120.

    Article  CAS  Google Scholar 

  • Békés F, Ács K, Gell G, Lantos C, Kovács AM, Birinyi Z, Pauk J (2017) Towards breeding less allergenic spelt wheat with low FODMAP content. Acta Alimentaria 46: 246–258.

    Google Scholar 

  • Biesiekierski JR, Rosella O, Rose R, Liels K, Barrett JS, Shepherd SJ, Gibson PR, Muir JG (2011) Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. Journal of Human Nutrition and Dietetics 24: 154–176.

    Google Scholar 

  • Boskov Hansen H, Andreasen MA, Nielsen MM, Larsen LM, Bach Knudsen KE, Meyer AS, Christensen LP, Hansen Å (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. European Food Research and Technology 214: 33–42.

    Article  CAS  Google Scholar 

  • Brandolini A, Hidalgo A, Plizzari L, Erba D (2011) Impact of genetic and environmental factors on einkorn wheat (Triticum monococcum L. subsp. monococcum) polysaccharides. Journal of Cereal Science 53: 65–72.

    Article  CAS  Google Scholar 

  • Call L, Reiter E, Grausgruber H, Schönlechner R, D’Amico S (2018) Fruktane in alten und neuen österreichischen Weizensorten. Getreide, Mehl und Brot 1/2018: 2–6.

    Google Scholar 

  • Carpita NC, Housley TL, Hendrix JE (1991) New features of plant-fructan structure revealed by methylation analysis and carbon-13 NMR spectroscopy. Carbohydrate Research 217: 127–136.

    Article  CAS  Google Scholar 

  • Cataldi TR, Campa C, De Benedetto GE (2000) Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing. Fresenius Journal of Analytical Chemistry 368: 739–758.

    Article  CAS  PubMed  Google Scholar 

  • Catassi G, Lionetti E, Gatti S, Catassi C (2017) The low FODMAP diet: many question marks for a catchy acronym. Nutrients 9: 292.

    Article  CAS  PubMed Central  Google Scholar 

  • Corradini C, Bianchi F, Matteuzzi D, Amoretti A, Rossi M, Zanoni S (2004) High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin. Journal of Chromatography A 1054: 165–173.

    Google Scholar 

  • Costabile A, Santarelli S, Claus S, Sanderson J, Hudspith BN, Brostoff J, Ward JL, Lovegrove A, Shewry PR, Jones HE, Gibson GR (2014) Effect of breadmaking process on in vitro gut microbiota parameters in irritable bowel syndrome. PloS One 9: e111225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini A, Amoriello T, Cecchini C, D’Egidio MG (2008) Analysis of factors influencing fructans production in winter cereals. Journal of Genetics and Breeding 62: 15–24.

    Google Scholar 

  • Ehdaie B, Alloush G, Madore M, Waines J (2006) Genotypic variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water-soluble carbohydrates. Crop Science 46: 2093–2103.

    Article  CAS  Google Scholar 

  • Ellegård L, Andersson H, Bosaeus I (1997) Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. European Journal of Clinical Nutrition 51: 1–5.

    Article  PubMed  Google Scholar 

  • Escarnot E, Dornez E, Verspreet J, Agneessens R, Courtin CM (2015) Quantification and visualization of dietary fibre components in spelt and wheat kernels. Journal of Cereal Science 62: 124–133.

    Article  CAS  Google Scholar 

  • Frakolaki G, Giannou V, Topakas E, Tzia C (2018) Chemical characterization and breadmaking potential of spelt versus wheat flour. Journal of Cereal Science 79: 50–56.

    Article  CAS  Google Scholar 

  • Fretzdorff B, Welge N (2003a) Fructan- und Raffinosegehalte im Vollkorn einiger Getreidearten und Pseudo-Cerealien. Getreide, Mehl und Brot 57: 3–8.

    CAS  Google Scholar 

  • Fretzdorff B, Welge N (2003b) Abbau von getreideeigenen Fructanen während der Herstellung von Roggenvollkornbrot. Getreide, Mehl und Brot 57: 147–151.

    CAS  Google Scholar 

  • Gebbing T (2003) The enclosed and exposed part of the peduncle of wheat (Triticum aestivum) – spatial separation of fructan storage. New Phytologist 159: 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Gélinas P, McKinnon C, Gagnon F (2016) Fructans, water-soluble fibre and fermentable sugars in bread and pasta made with ancient and modern wheat. International Journal of Food Science and Technology 51: 555–564.

    Google Scholar 

  • Gibson PR, Shepherd SJ (2005) Personal view: food for thought – western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Alimentary Pharmacology and Therapeutics 21: 1399–1409.

    Google Scholar 

  • Gibson P, Shepherd SJ (2010) Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. Journal of Gastroenterology and Hepatology 25: 252–258.

    Article  PubMed  Google Scholar 

  • Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Haskå L, Nyman M, Andersson R (2008) Distribution and characterisation of fructan in wheat milling fractions. Journal of Cereal Science 48: 768–774.

    Article  CAS  Google Scholar 

  • Henry RJ (1985) A comparison of the non-starch carbohydrates in cereal grains. Journal of the Science of Food and Agriculture 36: 1243–1253.

    Article  CAS  Google Scholar 

  • Henry RJ, Saini HS (1989) Characterization of cereal sugars and oligosaccharides. Cereal Chemistry 66: 362–365.

    CAS  Google Scholar 

  • Huynh B-L, Palmer L, Mather DE, Wallwork H, Graham RD, Welch RM, Stangoulis JCR (2008a) Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method. Journal of Cereal Science 48: 369–378.

    Article  CAS  Google Scholar 

  • Huynh B-L, Wallwork H, Stangoulis JCR, Graham RD, Willsmore KL, Olson S, Mather DE (2008b) Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 117: 701–709.

    Article  CAS  PubMed  Google Scholar 

  • Huynh B-L, Mather DE, Schreiber AW, Toubia J, Baumann U, Shoaei Z, Stein N, Ariyadasa R, Stangoulis JCR, Edwards J, Shirley N, Langridge P, Fleury D (2012) Clusters of genes en-coding fructan biosynthesizing enzymes in wheat and barley. Plant Molecular Biology 80: 299–314.

    Article  CAS  PubMed  Google Scholar 

  • Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. Journal of Experimental Medicine 209: 2395–2408.

    Google Scholar 

  • Kamal-Eldin A, Nygaard Lærke H, Bach Knudsen K-E, Lampi A-M, Piironen V, Adlercreutz H, Katina K, Poutanen K, Åman P (2009) Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food & Nutrition Research 53: 1912.

    Google Scholar 

  • Kissing Kucek L, Veenstra LD, Amnuaycheewa P, Sorrells ME (2015) A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. Comprehensive Reviews in Food Science and Food Safety 14: 285–302.

    Google Scholar 

  • Knez M, Abbott C, Stangoulis JCR (2014) Changes in the content of fructans and arabinoxylans during baking processes of leavened and unleavened breads. European Food Research and Technology 239: 803–811.

    Google Scholar 

  • Kuo TM, Van Middlesworth JF, Wolf WJ (1988) Content of raffinose oligosaccharides and sucrose in various plant seeds. Journal of Agricultural and Food Chemistry 36: 32–36.

    Google Scholar 

  • Laatikainen R, Koskenpato J, Hongisto SM, Loponen J, Poussa T, Hillilä M, Korpela R (2016) Randomised clinical trial: low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Alimentary Pharmacology & Therapeutics 44: 460–470.

    Google Scholar 

  • Laatikainen R, Koskenpato J, Hongisto SM, Loponen J, Poussa T, Huang X, Sontag-Strohm T, Salmenkari H, Korpela R (2017) Pilot study: comparison of sourdough wheat bread and yeast-fermented wheat bread in individuals with wheat sensitivity and irritable bowel syndrome. Nutrients 9: 1215.

    Google Scholar 

  • Langenkämper G, Zörb C, Seifert M, Mäder P, Fretzdorff B, Betsche T (2006) Nutritional quality of organic and conventional wheat. Journal of Applied Botany and Food Quality 80: 150–154.

    Google Scholar 

  • Lewis DH (1993) Nomenclature and diagrammatic representation of oligomeric fructans - a paper for discussion. New Phytologist 124: 583–594.

    Article  CAS  PubMed  Google Scholar 

  • Lineback DR, Rasper VF (1988) Wheat carbohydrates. In: Pomeranz Y (ed) Wheat chemistry and technology, 3rd edn, Vol 1. American Association of Cereal Chemists, St. Paul, MN, p 277–372

    Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences 66: 2007–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loponen J, Gänzle MG (2018) Use of sourdough in low FODMAP baking. Foods 7: 96.

    Article  CAS  PubMed Central  Google Scholar 

  • McCleary BV, Murphy A, Mugford DC (2000) Measurement of total fructan in foods by enzy-matic/spectrophotometric method: Collaborative study. Journal of AOAC International 83: 356–364.

    Article  CAS  PubMed  Google Scholar 

  • McGrath VB, Blakeney AB, Batten GD (1997) Fructan to nitrogen ratio as an indicator of nutrient stress in wheat crops. New Phytologist 136: 145–152.

    Article  CAS  Google Scholar 

  • Molis C, Flourié B, Ouarne F, Gailing MF, Lartigue S, Guibert A, Bornet F, Galmiche JP (1996) Digestion, excretion, and energy value of fructooligosaccharides in healthy humans. The American Journal of Clinical Nutrition 64: 324–328.

    Article  CAS  PubMed  Google Scholar 

  • Morrison SC, Delahaye MB, Woods CJ, Larsen NG (2015) Wheat fructans – for better or for worse? 3rd International Conference Food Sturctures, Digestion and Health, Wellington, New Zealand, 28–30 October 2015

    Google Scholar 

  • Moshfegh AJ, Friday JE, Goldman JP, Ahuja JKC (1999) Presence of inulin and oligofructose in the diets of Americans. The Journal of Nutrition 129: 1407–1411.

    Article  Google Scholar 

  • Muir JG, Shepherd SJ, Rosella O, Rose R, Gibson PR (2007) Fructan and free fructose content of common Australian vegetables and fruit. Journal of Agricultural and Food Chemistry 55: 6619–6627.

    Article  CAS  PubMed  Google Scholar 

  • Muir J, Rose R, Rosella O, Liels K, Barrett J, Shepherd S, Gibson PR (2009) Measurement of short chain carbohydrates (FODMAP) in common Australian vegetables and fruit by high performance liquid chromatography. Journal of Agricultural and Food Chemistry 57: 554–565.

    Article  CAS  PubMed  Google Scholar 

  • Muir JG, Mills J, Suter D, Békés F, Liels K, Yao LK, Gibson PR (2014) FODMAP in gluten-free grains may explain improved gastrointestinal symptoms in IBS on a gluten-free diet. Journal of Nutrition & Intermediary Metabolism 1: 14–15.

    Article  Google Scholar 

  • Mullin GE, Shepherd SJ, Chander Roland B, Ireton-Jones C, Matarese LE (2014) Irritable bowel syndrome: Contemporary nutrition management strategies. Journal of Parenteral and Enteral Nutrition 38: 781–799.

    Article  PubMed  Google Scholar 

  • Murray K, Wilkinson-Smith V, Hoad C, Costigan C, Cox E, Lam C, Marciani L, Gowland P, Spiller RC (2014) Differential effects of FODMAP (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. The American Journal of Gastroenterology 109: 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Feng B, Xu Z, Wang T (2011) Dynamic changes of wheat quality during grain filling in waxy wheat WX12. Czech Journal of Genetics and Plant Breeding 47: S182-S185.

    Google Scholar 

  • Nilsson U, Björck I (1988) Availability of cereal fructans and inulin in the rat intestinal tract. The Journal of Nutrition 118: 1482–1486.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson U, Dahlqvist A, Nilsson B (1986) Cereal fructosans: Part 2 – Characterization and structure of wheat fructosans. Food Chemistry 22: 95–106.

    Article  CAS  Google Scholar 

  • Nilsson U, Öste R, Jägerstad M (1987) Cereal fructans: hydrolysis by yeast invertase, in vitro and during fermentation. Journal of Cereal Science 6: 53–60.

    Article  CAS  Google Scholar 

  • Nilsson U, Öste R, Jägerstad M, Birkhed D (1988) Cereal fructans: in vitro and in vivo studies on availability in rats and humans. The Journal of Nutrition 118: 1325–1330.

    Article  CAS  PubMed  Google Scholar 

  • Pauk J, Lantos C, Ács K, Gell G, Tömösközi S, Hajdú Búza K, Békés F (2019) Spelt (Triticum spelta L.) in vitro androgenesis breeding for special food quality parameters. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: Cereals, Vol 5. Springer, Cham, p 525–557.

    Google Scholar 

  • Peshev D, van den Ende W (2014) Fructans: prebiotics and immunomodulators. Journal of Functional Foods 8: 348–357.

    Article  CAS  Google Scholar 

  • Pirkola L, Laatikainen R, Loponen J, Hongisto SM, Hillilä M, Nuora A, Yang B, Linderborg KM, Freese R (2018) Low-FODMAP vs regular rye bread in irritable bowel syndrome: randomized SmartPill study. World Journal of Gastroenterology 24: 1259–1268.

    Google Scholar 

  • Praznik W, Cieślik E, Filipiak-Florkiewicz A (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung/Food 46: 151–157.

    Google Scholar 

  • Rakha A, Åman P, Andersson R (2011) Dietary fiber in triticale grain: Variation in content, composition, and molecular weight distribution of extractable components. Journal of Cereal Science 54: 324–331.

    Article  CAS  Google Scholar 

  • Ritsema T, Smeekens S (2003) Fructans: beneficial for plants and humans. Current Opinion in Plant Biology 6: 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M-J, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. British Journal of Nutrition 104: S1-S63.

    Google Scholar 

  • Ruuska SA, Rebetzke GJ, van Herwaarden AF, Richards RA, Fettell NA, Tabe L, Jenkins CL (2006) Genotypic variation in watersoluble carbohydrate accumulation in wheat. Functional Plant Biology 33: 799–809.

    Article  CAS  PubMed  Google Scholar 

  • Schnyder H, Ehses U, Bestajovsky J, Mehrhoff R, Kühbauch W (1988) Fructan in wheat kernels during growth and compartmentation in the endosperm and pericarp. Journal of Plant Physiology 132: 333–338.

    Article  CAS  Google Scholar 

  • Schnyder H, Gillenberg C, Hinz J (1993) Fructan contents and dry matter deposition in different tissues of the wheat grain during development. Plant, Cell & Environment 16: 179–187.

    Article  CAS  Google Scholar 

  • Schober T, Clarke C, Kuhn M (2002) Characterization of functional properties of gluten proteins in spelt cultivars using rheological and quality factor measurements. Cereal Chemistry 79: 408–417.

    Article  CAS  Google Scholar 

  • Shepherd S, Lomer MCE, Gibson PR (2013) Short-chain carbohydrates and functional gastrointestinal disorders. The American Journal of Gastroenterology 108: 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Shimbata T, Inokuma T, Sunohara A, Vrinten P, Saito M, Takiya T, Nakamura T (2011) High levels of sugars and fructan in mature seed of sweet wheat lacking GBSSI and SSIIa enzymes. Journal of Agricultural and Food Chemistry 59: 4794–4800.

    Google Scholar 

  • Stallknecht G, Gilbertson K, Ranney J (1996) Alternative wheat cereals as food grains: einkorn, emmer, spelt, Kamut and triticale. In: Janick J (ed) New crops, new opportunities, new technologies. ASHS Press, Alexandria, VA, p 156–170

    Google Scholar 

  • Staudacher HM, Whelan K, Irving PM, Lomer MCE (2011) Comparison of symptom response following advice for a diet low in fermentable carbohydrates (FODMAP) versus standard dietary advice in patients with irritable bowel syndrome. Journal of Human Nutrition and Dietetics 24: 487–495.

    Article  CAS  PubMed  Google Scholar 

  • Staudacher HM, Lomer MC, Anderson JL, Barrett JS, Muir JG, Irving PM, Whelan K (2012) Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. The Journal of Nutrition 142: 1510–1518.

    Google Scholar 

  • Struyf N, Laurent J, Lefevere B, Verspreet J, Verstrepen KJ, Courtin CM (2017) Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations. Food Chemistry 218: 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Struyf N, Verspreet J, Courtin CM (2018) FODMAP reduction in yeast-leavened whole wheat bread. Cereal Foods World 63: 152–154.

    Google Scholar 

  • Valerii MC, Ricci C, Spisni E, Di Silvestro R, De Fazio L, Cavazza E, Lanzini A, Campieri M, Dalpiaz A, Pavan B, Volta U, Dinelli G (2015) Responses of peripheral blood mononucleated cells from non-celiac gluten sensitive patients to various cereal sources. Food Chemistry 176: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science 4: 247.

    Google Scholar 

  • van Loo J, Coussement P, De Leenheer L, Hoebregs H, Smits G (1995) On the presence of inulin and oligofructose as natural ingredients in the western diet. Critical Reviews in Food Science and Nutrition 35: 525–552.

    Article  PubMed  Google Scholar 

  • Verspreet J, Pollet A, Cuyvers S, Vergauwen R, van den Ende W, Delcour JA, Courtin CM (2012) A simple and accurate method for determining wheat grain fructan content and average degree of polymerization. Journal of Agricultural and Food Chemistry 60: 2102–2107.

    Article  CAS  PubMed  Google Scholar 

  • Verspreet J, Cimini S, Vergauwen R, Dornez E, Locato V, Le Roy K, De Gara L, Van den Ende W, Delcour JA, Courtin CM (2013a) Fructan metabolism in developing wheat (Triticum aestivum L.) kernels. Plant and Cell Physiology 54: 2047–2057.

    Article  CAS  PubMed  Google Scholar 

  • Verspreet J, Hemdane S, Dornez E, Cuyvers S, Delcour JA, Courtin CM (2013b) Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast (Saccharomyces cerevisiae)-mediated degradation. Journal of Agricultural and Food Chemistry 61: 1397–1404.

    Article  CAS  PubMed  Google Scholar 

  • Verspreet J, Holmgaard Hansen A, Dornez E, Delcour JA, van den Ende W, Harrison SJ, Courtin CM (2015) LC-MS analysis reveals the presence of graminan-and neo-type fructans in wheat grains. Journal of Cereal Science 61: 133–138.

    Article  CAS  Google Scholar 

  • Vu NT, Chin J, Pasco JA, Kovács A, Wing LW, Békés F, Suter D (2015) The prevalence of wheat and spelt sensitivity in a randomly selected Australian population. Cereal Research Communications 43: 97–107.

    Article  CAS  Google Scholar 

  • Whelan K, Abrahmsohn O, David GJP, Staudacher H, Irving P, Lomer MCE, Ellis PR (2011) Fructan content of commonly consumed wheat, rye and gluten-free breads. International Journal of Food Sciences and Nutrition 62: 498–503.

    Article  CAS  PubMed  Google Scholar 

  • Yasui T, Ashida K (2011) Waxy endosperm accompanies increased fat and saccharide contents in bread wheat (Triticum aestivum L.) grain. Journal of Cereal Science 52: 104–111.

    Article  CAS  Google Scholar 

  • Zevallos VF, Raker V, Tenzer S, Jimenez-Calvente C, Ashfaq-Khan M, Rüssel N, Pickert G, Schild H, Steinbrink K, Schuppan D (2017) Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152: 1100–1113.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler JU, Steiner D, Longin CFH, Würschum T, Schweiggert RM, Carle R (2016) Wheat and the irritable bowel syndrome – FODMAP levels of modern and ancient species and their retention during bread making. Journal of Functional Foods 25: 257–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H.G. acknowledges funding by the Austrian Research Promotion Agency (FFG) for the project ‘ID WHEAT’ (No. 858540) and by the OeAD GmbH, Vienna (WTZ project CZ 02/2018). Rothamsted Research (A.L., P.S.) receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK and the work reported here forms part of the Designing Future Wheat Institute Strategic Programme (BB/P016855/1). F.B. acknowledges financial support by the National Research, Development and Innovation Office, Hungary, for parts of the research mentioned in this chapter (project OTKA-K 16-119835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Grausgruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grausgruber, H., Lovegrove, A., Shewry, P., Békés, F. (2020). FODMAPs in Wheat. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat Quality For Improving Processing And Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3_21

Download citation

Publish with us

Policies and ethics