Skip to main content

Effects of Environmental Changes on the Allergen Content of Wheat Grain

  • Chapter
  • First Online:

Abstract

The protein composition of wheat grain is a primary determinant of its end-use quality. Grain proteins are also responsible for food-related disorders in humans, such as celiac disease, wheat dependent exercise-induced anaphylaxis, food allergy and baker’s asthma. The effects of environmental conditions on grain protein composition have been extensively studied. Abiotic and biotic stresses can have significant effects on the expression of grain proteins and the overall allergen content of wheat grain. Breeding programs to select wheat varieties with low allergen content represent one step towards eventually improving the quality of life for people affected by gluten intolerance and wheat allergy. This chapter aims to review current understanding of how changes in global environments affect the expression of proteins associated with food-related diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altenbach SB, Tanaka CK, Hurkman WJ, Whitehan LC, Vensel WH, Dupont FM (2011) Differential effects of a post-anthesis fertilizer regimen on the wheat flour proteome determined by quantitative 2-DE. Proteome Science 2011, 9: 46.

    Google Scholar 

  • Appels R, Barsby T, Risacher T, Békés F (2011) Linking the genome to phenotypes in wheat: advances in technologies and concepts. In: The World Wheat Book – a history of wheat breeding. Vol 2. Eds.: Bonjean A, Angus W, and van Ginkel M, pp. 709–748, Lavoisier, London.

    Google Scholar 

  • Arbes SJ Jr, Gergen PJ, Elliott L, Zeldin DC (2005) Prevalences of positive skin test responses to 10 common allergens in the US population: results from the Third National Health and Nutrition Examination Survey. The Journal of Allergy and Clinical Immunology 116: 377–383.

    Article  PubMed  Google Scholar 

  • Basford KE and Cooper M (1998) Genotypexenvironment interactions and some considerations of their implications for wheat breeding in Australia. Australian Journal of Agricultural Research 49: 153–174.

    Article  Google Scholar 

  • Begcy K, Walia H (2015) Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Science 240: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Bromilow S, Gethings LA, Buckley M, Bromley M, Shewry PR, Langridge JI, Mills CL (2017) A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. Journal of Proteomics 163: 67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Lan P, Tarr A, Yan YM, Francki M, Appels R, Ma W (2007) MALDI-TOF based wheat gliadin protein peaks are useful molecular markers for wheat genetic study. Rapid Communications in Mass Spectroscopy 21: 2913–2917.

    CAS  Google Scholar 

  • Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F (2016) Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration BMC Plant Biology (2016) 16: 188.

    Google Scholar 

  • Chetouhi C, Bonhomme L, Lecomte P, Cambon F, Merlino M, Biron DG, Langin T (2015) A proteomics survey on wheat susceptibility to Fusarium head blight during grain development. European Journal of Plant Pathology 141: 407–418.

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Kang CS, Kang TG, Cho KM, Park CS (2018) Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. Journal of Integrative Agiculture 17: 982–993.

    Article  CAS  Google Scholar 

  • Dai Z, Plessis A, Vincent J, Duchateau N, Besson A, Dardevet M, et al. (2015) Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant Journal 83: 326–43.

    Article  CAS  Google Scholar 

  • Dale H, Biesiekierski J, Lied G (2018) Non-coeliac gluten sensitivity and the spectrum of gluten-related disorders: An updated overview. Nutrition Research Reviews 1–10.

    Google Scholar 

  • Davis W (2011) Wheat belly: Loose the wheat and find your path back to health. Rodale Books Inc, New York.

    Google Scholar 

  • Dencic D, Mladenov N, Kobiljski B (2011) Effects of genotype and environment on breadmaking quality in wheat. International Journal of Plant Production 5: 71–82.

    CAS  Google Scholar 

  • Dexter JE, Clear RM, Preston KR (1996) Fusarium Head Blight: Effect on the Milling and Bakingof Some Canadian Wheats. Cereal Chemistry 73: 695–701.

    CAS  Google Scholar 

  • Dumur J, Jahier J, Bancel E, Laurière M, Bernard M, Branlard G. (2004) Proteomic analysis of aneuploid lines in the homeologous group 1 of the hexaploid wheat cultivar Courtot. Proteomics. 4: 2685–2695.

    Article  CAS  PubMed  Google Scholar 

  • Dupont FM, Hurkman WJ, Vensel WH, Chan R, Lopez R, Tanaka CK, Altenbach SB (2006) Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development. Journal of Cereal Science 44: 101–112.

    Article  CAS  Google Scholar 

  • Eggert K, Zörb C, Muhling KH, Pawelzik E (2011) Proteome analysis of Fusarium infection in emmer grains (Triticum dicoccum). Plant Pathology 60: 918–928.

    Article  CAS  Google Scholar 

  • Elli L, Branchi F, Tomba C, Villalta D, Norsa L, Ferretti F, Roncoroni L, Bardella MT (2015) Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity. World Journal of Gastroenterology 21: 7110–7119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W, Li X, Liu WD (2014) Effects of powdery mildew infection on grain quality traits and yield of winter wheat. Journal of Triticeae Crops 34: 1706–1712.

    CAS  Google Scholar 

  • Flagella Z, Giuliani MM, Giuzio L, Volpi C, Masci S (2010) Influence of water deficit on durum wheat storage protein composition and technological quality. European Journal of Agronomy 33: 197–207.

    Article  Google Scholar 

  • Fowler DB, de la Roche IA (1975) Wheat quality evaluation. 3. Influence of genotype and environment. Canadian Jounal of Plant Science 55: 263–269.

    Article  Google Scholar 

  • Ford R (2008) The Gluten Syndrome. Is wheat causing you harm? RRS Global LT, Christchurch, New Zealand.

    Google Scholar 

  • Gao HY (2012) Influence of powdery mildew on quality and its molecular mechanism in wheat (Triticum aestivum L.) [D]. Doctoral dissertation of Henan agricultural university, Zhengzhou city, Henan province, China.

    Google Scholar 

  • Gao HY, He DX, Niu JS (2014) The effect and molecular mechanism of powdery mildew on wheat grain prolamins. Journal of Agricultural Science 152: 239–253.

    Article  CAS  Google Scholar 

  • Gao HY, Niu J, Li S (2018) Impacts of Wheat Powdery Mildew on Grain Yield and Quality and Its Prevention and Control Methods. American Journal of Agriculture and Forestry 6: 141–147.

    Article  Google Scholar 

  • García-Molina MD, Barro F (2017) Characterization of Changes in Gluten Proteins in Low-Gliadin Transgenic Wheat Lines in Response to Application of Different Nitrogen Regimes. Frontiers in Plant Science 8: 257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge P, Ma C, Wang S, Gao L, Li X, Guo G, Ma W, Yan Y (2012) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Analitical and Bioanalytical Chemistry 402: 1297–1313.

    Article  CAS  Google Scholar 

  • Georget DM, Underwood-Toscano C, Powers SJ, Shewry PR, Belton PS (2008) Effect of variety and environmental factors on gluten proteins: an analytical, spectroscopic, and rheological study. Journal of Agriculture and Food Chemistry 56: 1172–1179.

    Article  CAS  Google Scholar 

  • Grundy J, Matthews S, Bateman B, Dean T, Arshad SH (2002) Rising prevalence of allergy to peanut in children: data from 2 sequential cohorts. Journal of Allergy and Clinical Immunology 110: 784–789.

    Article  PubMed  Google Scholar 

  • Gu A, Hao P, Lv D, Zhen S, Bian Y, Ma C, Xu Y, Zhang W, Yan Y (2015) Integrated Proteome Analysis of the Wheat Embryo and Endosperm Reveals Central Metabolic Changes Involved in the Water Deficit Response during Grain Development. Journal of Agriculture and Food Chemistry 63: 8478–8487.

    Article  CAS  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. Journal of Proteome Research 6: 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  • Haraszi R, Chassaigne H, Macquet A, Ulberth F (2011) Analytical methods for detection of gluten in food - last method developments in support to the legislations on labelling of foodstuffs. J AOAC 94: 1–20.

    Google Scholar 

  • Hoffmann-Sommergruber K, SAFE consortium (2005) The SAFE project: ‘plant food allergies: field to table strategies for reducing their incidence in Europe’ an EC-funded study. Allergy 60: 436–442.

    Google Scholar 

  • Hristov N, Mladenov N, Djuric V, Kondic-Spika A, Marjanovic-Jeromela A, Simic D (2010) Genotype by environment interactions in wheat quality breeding programs in south-east Europe. Euphytica 174: 315–324.

    Article  Google Scholar 

  • Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB (2009) Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain Journal of Cereal Science 4: 12–23.

    Article  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK, Vensel WH, Thilmony R, Altenbach SB (2013) Comparative proteomic analysis of the effect of temperature and fertilizer on gliadin and glutenin accumulation in the developing endosperm and flour from Triticum aestivum L. cv. Butte 86. Proteome Science 11: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361: 661.

    Article  CAS  Google Scholar 

  • Jarvan M, Adamson EA, Lukme L, Akk A (2008) The effect of sulphur fertilization on yield, quality of protein and baking properties of winter wheat. Agronomy Research 6: 459–469.

    Google Scholar 

  • Jiang SS, Liang XN, Li X, Wang SL, Lv DW, Ma CY, Li XH, Ma WJ, Yan YM (2012) Wheat drought-responsive grain proteome analysis by linear and nonlinear 2-DE and MALDI-TOF mass spectrometry. International Journal of Molecular Sciences 13: 16065–16083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhász A, Belova T, Florides CG, Maulis Cs, Fischer I, Gell Gy, Birinyi Zs, Ong J, Keeble-Gagnere G, Maharajan A, Ma W, Gibson P, Jia J, Lang D, Mayer KFX, Spannagl M, International Wheat Genome Sequencing Consortium, Tye-Din JA, Appels R, Olsen OA (2018) Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Science Advances 4, eaar8602.

    Google Scholar 

  • Juhász A, Haraszi R, Maulis Cs (2015) ProPepper: a curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families. Database 2015 1–16.

    Google Scholar 

  • Kamal AHM, Kim KH, Shin KH, Kim DE, Oh MW, Choi JS, Hirano H, Heo HY, Woo SH (2010) Proteomics-based dissection of biotic stress responsive proteins in bread wheat (Triticum aestivum L.), African Journal of Biotechnology 9: 7239–7255.

    CAS  Google Scholar 

  • Laino P, Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, Svensson B, et al. (2010) Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10: 2359–2368.

    Article  CAS  PubMed  Google Scholar 

  • Lee LA, Burks AW (2006) Food allergies: prevalence, molecular characterization, and treatment/prevention strategies. Annual Review of Nutrition 26: 539–565.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu XH, Yang XW (2018) Proteomic analysis of the impacts of powdery mildew on wheat grain. Food Chemistry 261: 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Kelemen A (2006) Associating phenotypes with molecular events: recent statistical advances and challenges underpinning microarray experiments. Functional and Integratie Genomics 6: 1–13.

    Article  CAS  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, et al. (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany 66: 3477–3486.

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ, Rybka K, Korzun K, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47: 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Majoul L, Bancel E, Triboï E, Hamida JB, Branlard G (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4: 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Mills ENC, Mackie AR, Burney P, Beyer K, Frewer L, Madsen C, Botjes E, Crevel RWR, van Ree R (2007) The prevalence, cost and basis of food allergy across Europe. Allergy 62: 717–722.

    Article  CAS  PubMed  Google Scholar 

  • Perlikowski D, Wisniewska H, Goral T, Kwiatek M, Majka M (2014) Identification of Kernel Proteins Associated with the Resistance to Fusarium Head Blight in Winter Wheat (Triticum aestivum L.). PLoS ONE 9: e110822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, F. van Ex J (2018) The transcriptional landscape of polyploid wheat. Science 361, eaar6089.

    Google Scholar 

  • Rancé F (2003) Mustard allergy as a new food allergy. Allergy 58: 287–288.

    Article  PubMed  Google Scholar 

  • Shewry PR, Tatham AS (2016) Improving wheat to remove celiac epitopes but retain functionality. Journal of Cereal Science 67: 12–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triboï E, Abad A, Michelena A, Lloveras J, Ollier JL, Daniel C (2000) Environmental effects on the quality of two wheat genotypes: 1. quantitative and qualitative variation of storage proteins. European Journal of Agronomy 13: 47–64.

    Article  Google Scholar 

  • Triboï, E, Martre P, Triboï-Blondel AM (2003) Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany 54: 1731–1742.

    Article  CAS  PubMed  Google Scholar 

  • van Lill D, Smith MF (1997) Aquality assurance strategy for wheat (Triticum aestivum L.) where growth environment predominates. South African Journal of Plant and Soil 14: 183–191.

    Article  Google Scholar 

  • Wan Y, Poole RL, Huttly AK, Toscano R, Feeney K, Welham S, Gooding MK, Mills C, Edwards KJ, Shewry PR, Mitchell RAC 2008. Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9: 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, Y, Gritsch, CS, Hawkesford MJ, Shewry PR (2014) Effects of nitrogen nutrition on the synthesis and deposition of the omega-gliadins of wheat. Annals of Botany 113: 607–615.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Xie, C, Xin M, Song N, Ni Z, Sun Q (2012) Comparative Proteomic Analysis of Wheat Response to Powdery Mildew Infection in Wheat Pm30 Near-Isogenic Lines, Journal of Phytopathology 160: 229–236.

    Article  CAS  Google Scholar 

  • Wang X, Hou L, Lu Y, Wu B, Gong X, Liu M, et al. (2018) Metabolic adaptation of wheat grains contributes to a stable filling rate under heat stress. Journal of Experimental Botany 69: 5531–5545.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wieser H, Gutser R, von Tucher S (2004) Influence of sulphur fertilisation on quantities and proportions of gluten protein types in wheat flour. Journal of Cereal Science 40: 239–244.

    Article  CAS  Google Scholar 

  • Williams RMA, O’Brien L, Eagles HA, Solah VA, Jayasena A (2008) The influences of genotype, environment, and genotype x environment interaction on wheat quality. Australian Journal of Agricultural Research 59: 95–111.

    Article  Google Scholar 

  • Wrigley CW, Békés F, Bushuk W (2006) Chapter 1. Gluten: A balance of gliadin and glutenin. In: Gliadin and glutenin. The unique balance of wheat quality. Eds.: Wrigley, C.W., Békés, F., and Bushuk, W., pp. 3–33. AACCI Press, St Paul, Min., USA.

    Google Scholar 

  • Yang F, Jorgensen AD, Li H, Sondergaard I, Finnie C, Svensson B, Jiang D, Wollenweber B, Jacobsen S (2011) Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics 11: 1684: 1695.

    Google Scholar 

  • Yu Z, Juhász A, Islam S, Diepeveen D, Zhang J, Wang P, Ma W (2018) Impact of mid-season sulphur defciency on wheat nitrogen metabolism and biosynthesis of grain protein. Scientific Reports 8: 2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zevallos VF, Raker V, Tenzer S, Jimenz-Calvente C, Ashfaq-Khan M, Russel N, et al. (2017) Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology 152: 1100–1113.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pan J, Huang X, Guo D, Lou H, Hou Z, et al. (2017). Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Scientific Reports 7: 3468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cao X, Juhász A, Islam S, Qi P, She M et al. (2018) Wheat avenin-like protein and its significant Fusarium Head Blight resistant functions. bioRxiv 406694.

    Google Scholar 

  • Zhao FJ, Hawkesford MJ, McGrath SP (1998) Sulphur Assimilation and Effects on Yield and Quality of Wheat. Journal of Cereal Science 30: 1–17.

    Article  Google Scholar 

  • Zheng T, Qi PF, Cao YL, Han YN, Ma HL, Guo ZR, et al. (2018) Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Scientific Reports 8: 11928|.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zörb C, Grover C, Steinfurth D, Mühling KH (2009) Quantitative proteome analysis of wheat gluten as influenced by N and S nutrition. Plant and Soil 327: 225–234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angéla Juhász .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juhász, A., Haraszi, R., Békés, F. (2020). Effects of Environmental Changes on the Allergen Content of Wheat Grain. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat Quality For Improving Processing And Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3_19

Download citation

Publish with us

Policies and ethics