Skip to main content

Concluding Remarks: Special Relations Between Emotional System and Sympathetic Activities

  • Chapter
  • First Online:
Emotions and the Right Side of the Brain
  • 685 Accesses

Abstract

The existence of priviledged relations betweeen the emotional system and sympathetic activities is suggested by the fact that basic emotions are conceived as an emergency system, and that the aim of sympathetic activities is to allow a strong and quick response to emergency situations. Furthermore, both basic emotions and the sympathetic system are lateralised to the right hemisphere whereas more controversial is the lateralisation of the parasympathetic system. These data are consistent with a model stressing the existence of a special link between the right hemisphere, sympathetic activities and the most prototypical forms of basic emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson S, Finset A. Heart rate and skin conductance reactivity to brief psychological stress in brain-injured patients. J Psychosom Res. 1998;44:645–56.

    CAS  PubMed  Google Scholar 

  • Bard P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiology. 1928;84:490–515.

    Article  Google Scholar 

  • Caltagirone C, Zoccolotti P, Originale G, Daniele A, Mammucari A. Autonomic reactivity and facial expression of emotions in brain-damaged patients. In: Gainotti G, Caltagirone C, editors. Emotions and the dual brain. Heidelberg: Springer; 1989. p. 204–21.

    Chapter  Google Scholar 

  • Cannon WB. The James-Lange theory of emotion: a critical examination and an alternative theory. Am J Psychol. 1927;39:106–24.

    Article  Google Scholar 

  • Carretie’ L, Mercado F, Tapia M, Hinojosa JA. Emotion, attention, and the ‘negativity bias’, studied through event-related potentials. Int J Psychophysiol. 2001;41:75–85.

    Article  Google Scholar 

  • Craig AD. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci. 2005;9:566–71.

    Article  Google Scholar 

  • Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.

    Article  CAS  Google Scholar 

  • Craig AD. The sentient self. Brain Struct Funct. 2010;214:563–77.

    Article  Google Scholar 

  • Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82.

    Article  Google Scholar 

  • Duarte J, Pinto-Gouveia J. Positive affect and parasympathetic activity: evidence for a quadratic relationship between feeling safe and content and heart rate variability. Psychiatry Res. 2017;257:284–9.

    Article  Google Scholar 

  • Ekman P. Expression and the nature of emotion. In: Scherer K, Ekman P, editors. Approachs to emotion. Hillsdale, NJ: Erlbaum; 1984. p. 319–44.

    Google Scholar 

  • Frijda NH. The emotions. Cambridge: Cambridge University Press; 1986.

    Google Scholar 

  • Gainotti G. Emotions, unconscious processes and the right hemisphere. Neuro-psychoanalysis. 2005;7:71–81.

    Google Scholar 

  • Gainotti G. Face familiarity feelings, the right temporal lobe and the possibile underlying neural mechanisms. Brain Res Rev. 2007;56:214–35.

    Article  Google Scholar 

  • Gainotti G. The format of conceptual representations disrupted in semantic dementia: a position paper. Cortex. 2012;48:521–9.

    Article  Google Scholar 

  • Gainotti G. Emotions and the right hemisphere: can new data clarify old models? Neuroscientist. 2019;25:258–70.

    Article  Google Scholar 

  • Karplus JP, Kreidl A. Gehirn und Sympathicus. I Zwischenhirnbasis und Hallsympathicus Pf Arch Gesam Physiol Men Thiere. 1909;129:138–44.

    Article  Google Scholar 

  • Karplus JP, Kreidl A. Gehirn und Sympathicus. VII Uber Beziehungen der Hypothalamuszentren zu Blutdruck und innerer Sekretion. Pf Arch Gesam Physiol Men Thiere. 1927;215:667–70.

    Article  Google Scholar 

  • Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol. 2010;84:394–421.

    Article  Google Scholar 

  • Làdavas E, Cimatti D, Del Pesce M, Tozzi G. Emotional evaluation with and without conscious stimulus identifications: evidence from a split-brain patient. Cogn Emot. 1993;7:95–114.

    Article  Google Scholar 

  • LeDoux J. The emotional brain. New York: Simon and Schuster; 1996.

    Google Scholar 

  • Naver HK, Blomstrand C, Wallin G. Reduced heart rate variability after right-sided stroke. Stroke. 1996;27:247–51.

    Article  CAS  Google Scholar 

  • Oatley K, Johnson-Laird P. Toward a cognitive theory of emotions. Cogn Emot. 1987;1:29–50.

    Article  Google Scholar 

  • Oppenheimer SM. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin Auton Res. 2006;16:6–11.

    Article  Google Scholar 

  • Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–32.

    Article  CAS  Google Scholar 

  • Panksepp J. Affective neuroscience: the foundations of human and animal emotions. New York: Oxford University Press; 1998.

    Google Scholar 

  • Panksepp J. Affective consciousness in animals: perspectives on dimensional and primary process emotion approaches. Proc R Soc Lond B Biol Sci. 2010;277:2905–7.

    Article  Google Scholar 

  • Rosen AD, Gur RC, Sussman N, Gur RE, Hurtig H. Hemispheric asymmetry in the control of heart rate. Abstr Social Neurosci. 1982;8:917.

    Google Scholar 

  • Rozin P, Royzman EB. Negativity bias, negativity dominance, and contagion. Personal Soc Psychol Rev. 2001;5:296–320.

    Article  Google Scholar 

  • Sander D, Klingelhofer J. Changes of circadian blood pressure patterns and cardiovascular parameters indicate lateralization of sympathetic activation following hemispheric brain infarction. J Neurol. 1995;242:313–8.

    Article  CAS  Google Scholar 

  • Shiota MN, Neufeld SL, Yeung WH, Moser SE, Perea EF. Feeling good: autonomic nervous system responding in five positive emotions. Emotion. 2011;11:1368–78.

    Article  Google Scholar 

  • Spence S, Shapiro D, Zaidel E. The role of the right hemisphere in the physiological and cognitive components of emotional processing. Psychophysiology. 1996;33:112–22.

    Article  CAS  Google Scholar 

  • Tokgozoglu SL, Batur MK, Topçuoglu MA, Saribas O, Kes S, Oto A. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke. 1999;30:1307–11.

    Article  CAS  Google Scholar 

  • Vaish A, Grossmann T, Woodward A. Not all emotions are created equal: the negativity bias in socialemotional development. Psychol Bull. 2008;134:383–403.

    Article  Google Scholar 

  • Wittling W. Psychophysiological correlates of human brain asymmetry: blood pressure changes during lateralized presentation of an emotionally laden film. Neuropsychologia. 1990;28:457–70.

    Article  CAS  Google Scholar 

  • Wittling W. Brain asymmetry in the control of autonomic-physiologic activity. In: Asymmetry B, editor. Davidson RJ, Hugdahl K. Cambridge: MIT Press; 1995. p. 305–57.

    Google Scholar 

  • Wittling W, Block A, Schweiger E, Genzel S. Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cogn. 1998;38:17–35.

    Article  CAS  Google Scholar 

  • Yokoyama K, Jennings R, Ackles P, Hood BS, Boller F. Lack of heart rate changes during attention-demanding tasks after right hemisphere lesions. Neurology. 1987;37:624–30.

    Article  CAS  Google Scholar 

  • Yoon BW, Morillo CA, Cechetto DF, Hachinski V. Cerebral hemispheric lateralization in cardial autonomic control. Arch Neurol. 1997;54:741–4.

    Article  CAS  Google Scholar 

  • Zamrini EY, Meador KJ, Loring DW, Nichols FT, Lee GP, Figueroa RE et al. Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology 1990;40:1408–11.

    Article  CAS  Google Scholar 

  • Zoccolotti P, Caltagirone C, Benedetti N, Gainotti G. Perturbation des réponses végétatives aux stimuli émotionnels au cours des lésions hémisphériques unilatérales. L’Encéphale. 1986a;12:263–8.

    Google Scholar 

  • Zoccolotti P, Caltagirone C, Benedetti N, Gainotti G. Perturbation des réponses végétatives aux stimuli émotionnels au cours des lésions hémisphériques unilatérales. L’Encéphale. 1986b;12:263–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gainotti, G. (2020). Concluding Remarks: Special Relations Between Emotional System and Sympathetic Activities. In: Emotions and the Right Side of the Brain. Springer, Cham. https://doi.org/10.1007/978-3-030-34090-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34090-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34089-6

  • Online ISBN: 978-3-030-34090-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics