Skip to main content

General Neurobiological Models Advanced to Explain Results Obtained Following these New Lines of Research

  • Chapter
  • First Online:
Emotions and the Right Side of the Brain
  • 675 Accesses

Abstract

In this chapter, two general neurobiological models recently advanced by Gainotti and by Craig to explain most clinical, neuropsychological and neurobiological data reported in previous chapters of this volume will be taken into account. Gainotti’s model develops the ‘right hemisphere hypothesis’ and assumes that the main features of the emotional system (considered as a phylogenetically older, emergency system), may be consonant with the nonverbal functional organisation of the right hemisphere, viewed as more primitive than the verbally moulded left hemisphere. According to this model, a high degree of emotional processing, reliance on sensorimotor functions, unawareness and automaticity should characterise the nonverbal functional organisation of the right hemisphere. On the contrary, a prevalence of verbal cognitive processing, consciousness and intentionality should characterise the left hemisphere’s functional organisation. According to Craig’s model, which develops the ‘valence hypothesis’, hemispheric asymmetries for emotional experience could be based on an unequal representation of homeostatic activities, resulting from asymmetries in the peripheral autonomic nervous system. As a consequence of these peripheral asymmetries, prosocial activities, supported by parasympathetic functions, should be mainly represented in the left hemisphere, whereas individual-oriented (survival) emotions, supported by sympathetic activities, should be mainly represented in the right hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson S, Finset A. Heart rate and skin conductance reactivity to brief psychological stress in brain-injured patients. J Psychosom Res. 1998;44:645–56.

    Article  CAS  PubMed  Google Scholar 

  • Barron SA, Rogovski Z, Hemli J. Autonomic consequences of cerebral hemisphere infarction. Stroke. 1994;25:113–6.

    Article  CAS  PubMed  Google Scholar 

  • Bartolomeo P, Chokron S. Orienting of attention in left unilateral neglect. Neurosci Biobehav Rev. 2002;26:217–34.

    Article  PubMed  Google Scholar 

  • Caltagirone C, Zoccolotti P, Originale G, Daniele A, Mammucari A. Autonomic reactivity and facial expression of emotions in brain-damaged patients. In: Gainotti G, Caltagirone C, editors. Emotions and the dual brain. Heidelberg: Springer; 1989. p. 204–21.

    Chapter  Google Scholar 

  • Cannon WB. The James-Lange theory of emotion: a critical examination and an alternative theory. Am J Psychol. 1927;39:106–24.

    Article  Google Scholar 

  • Colivicchi F, Bassi A, Santini M, Caltagirone C. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke. 2004;35:2094–8.

    Article  PubMed  Google Scholar 

  • Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655–66.

    Article  CAS  PubMed  Google Scholar 

  • Craig AD. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci. 2005;9:566–71.

    Article  PubMed  Google Scholar 

  • Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.

    Article  CAS  PubMed  Google Scholar 

  • Craig AD. The sentient self. Brain Struct Funct. 2010;214:563–77.

    Article  PubMed  Google Scholar 

  • Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82.

    Article  PubMed  Google Scholar 

  • Craig AD, Chen K, Bandy D, Reiman EM. Thermosensory activation of insular cortex. Nature. Neurosci. 2000;3:184–90.

    Article  CAS  PubMed  Google Scholar 

  • Ekman P. Expression and the nature of emotion. In: Scherer K, Ekman P, editors. Approachs to emotion. Hillsdale, NJ: Erlbaum; 1984. p. 319–44.

    Google Scholar 

  • Frijda NH. The emotions. Cambridge: Cambridge University Press; 1986.

    Google Scholar 

  • Frijda NH. Emotions, cognitive structures and action tendency. Cogn Emot. 1987;1:115–43.

    Article  Google Scholar 

  • Gainotti G. Lateralization of brain mechanisms underlying automatic and controlled forms of spatial orienting of attention. Neurosci Biobehav Rev. 1996;20:617–22.

    Article  CAS  PubMed  Google Scholar 

  • Gainotti G. Emotions, unconscious processes and the right hemisphere. Neuro-psychoanalysis. 2005;7:71–81.

    Google Scholar 

  • Gainotti G. Face familiarity feelings, the right temporal lobe and the possibile underlying neural mechanisms. Brain Res Rev. 2007a;56:214–35.

    Article  PubMed  Google Scholar 

  • Gainotti G. Different patterns of famous people recognition disorders in patients with right and left anterior temporal lesions: a systematic review. Neuropsychologia. 2007b;45:1591–607.

    Article  PubMed  Google Scholar 

  • Gainotti G. What the study of voice recognition in normal subjects and brain-damaged patients tells us about models of familiar people recognition. Neuropsychologia. 2011;49:2273–82.

    Article  PubMed  Google Scholar 

  • Gainotti G. The format of conceptual representations disrupted in semantic dementia: a position paper. Cortex. 2012;48:521–9.

    Article  PubMed  Google Scholar 

  • Gainotti G. Is the difference between right and left ATLs due to the distinction between general and social cognition or between verbal and non-verbal representations? Neurosci Biobehav Rev. 2015;51:296–312.

    Article  PubMed  Google Scholar 

  • Gainotti G. Emotions and the right hemisphere: can new data clarify old models? Neuroscientist. 2019a;25:258–70.

    Article  PubMed  Google Scholar 

  • Gainotti G. The role of the right hemisphere in emotional and behavioral disorders of patients with frontotemporal lobar degeneration: an updated review. Front Aging Neurosci. 2019b; https://doi.org/10.3389/fnagi.2019.00055.

  • Guo CC, Sturm VE, Zhou J, Gennatas ED, Trujillo AJ, Hua AY, et al. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proc Natl Acad Sci U S A. 2016;113:E2430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanamori T, Kunitake T, Kato K, Kannan H. Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol. 1998;79:2535–45.

    Article  CAS  PubMed  Google Scholar 

  • Harmon-Jones E, Allen JJB. Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. J Pers Soc Psychol. 1998;74:1310–6.

    Article  CAS  PubMed  Google Scholar 

  • Harmon-Jones E, Sigelman J. State anger and prefrontal brain activity: evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. J Pers Soc Psychol. 2001;80:797–803.

    Article  CAS  PubMed  Google Scholar 

  • Hewig J, Hagemann D, Seifert J, Naumann E, Bartussek D. On the selective relation of frontal cortical asymmetry and anger-out versus anger-control. J Pers Soc Psychol. 2004;87:926–39.

    Article  PubMed  Google Scholar 

  • Làdavas E, Cimatti D, Del Pesce M, Tozzi G. Emotional evaluation with and without conscious stimulus identifications: evidence from a split-brain patient. Cogn Emot. 1993;7:95–114.

    Article  Google Scholar 

  • LeDoux J. The emotional brain. New York: Simon and Schuster; 1996.

    Google Scholar 

  • Lindell AK. Continuities in emotion lateralization in human and non-human primates. Front Hum Neurosci. 2013;7:464. https://doi.org/10.3389/fnhum.2013.00464. eCollection 2013.

  • Morris JS, Ohman A, Dolan RJ, Rowland D, Young AW, Calder AJ, et al. Conscious and unconscious emotional learning in the human amygdala. Nature. 1998;393:467–70.

    Article  CAS  PubMed  Google Scholar 

  • Morris JS, Ohman A, Dolan RJ. A subcortical pathway to the right amygdala mediating “unseen” fear. PNAS. 1999;96:1680–5.

    Article  CAS  Google Scholar 

  • Naver HK, Blomstrand C, Wallin G. Reduced heart rate variability after right-sided stroke. Stroke. 1996;27:247–51.

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–32.

    Article  CAS  PubMed  Google Scholar 

  • Panksepp J. Affective consciousness in animals: perspectives on dimensional and primary process emotion approaches. Proc R Soc Lond B Biol Sci. 2010;277:2905–7.

    Article  Google Scholar 

  • Russell JA, Barrett LF. Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. J Pers Soc Psychol. 1999;76:805–19.

    Article  CAS  PubMed  Google Scholar 

  • Shi CJ, Cassell MD. Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol. 1998;399:440–68.

    Article  CAS  PubMed  Google Scholar 

  • Snowden JS, Thompson JC, Neary D. Knowledge of famous faces and names in semantic dementia. Brain. 2004;127:860–72.

    Article  CAS  PubMed  Google Scholar 

  • Spence S, Shapiro D, Zaidel E. The role of the right hemisphere in the physiological and cognitive components of emotional processing. Psychophysiology. 1996;33:112–22.

    Article  CAS  PubMed  Google Scholar 

  • Sturm VE, Sible IJ, Datta S, Hua AY, Perry DC, Kramer JH, et al. Resting parasympathetic dysfunction predicts prosocial helping deficits in behavioral variant frontotemporal dementia. Cortex. 2018a;109:141–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturm VE, Brown JA, Hua AY, Lwi SJ, Zhou J, Kurth F, et al. Network architecture underlying basal autonomic outflow: evidence from Frontotemporal dementia. J Neurosci. 2018b;38:8943–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokgozoglu SL, Batur MK, Topçuoglu MA, Saribas O, Kes S, Oto A. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke. 1999;30:1307–11.

    Article  CAS  PubMed  Google Scholar 

  • Toller G, Brown J, Sollberger M, Shdo SM, Bouvet L, Sukhanov P, et al. Individual differences in socioemotional sensitivity are an index of salience network function. Cortex. 2018;103:211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toller G, Yang WFZ, Brown JA, Ranasinghe KG, Shdo SM, Kramer JH, et al. Divergent patterns of loss of interpersonal warmth in frontotemporal dementia syndromes are predicted by altered intrinsic network connectivity. Neuroimage Clin. 2019;22:101729. https://doi.org/10.1016/j.nicl.2019.101729.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier P, Mohr C, Valenza N, Wetzel C, Landis T. Hyperfamiliarity for unknown faces after left lateral temporo-occipital venous infarction: a double dissociation with prosopagnosia. Brain. 2003;126:889–907.

    Article  PubMed  Google Scholar 

  • Wallez C, Vauclair J. Human (Homo sapiens) and baboon (Papio papio) chimeric face processing: right-hemisphere involvement. J Comp Psychol. 2013;127:237–44.

    Article  PubMed  Google Scholar 

  • Wittling W. Brain asymmetry in the control of autonomic-physiologic activity. In: Davidson RJ, Hugdahl K, editors. Brain asymmetry. Cambridge: MIT Press; 1995. p. 305–57.

    Google Scholar 

  • Wittling W, Block A, Genzel S, Schweiger E. Hemisphere asymmetry in parasympathetic control of the heart. Neuropsychologia. 1998;36:461–8.

    Article  CAS  PubMed  Google Scholar 

  • Woollams AM, Patterson K. Cognitive consequences of the left-right asymmetry of atrophy in semantic dementia. Cortex. 2018;107:64–77.

    Article  PubMed  Google Scholar 

  • Yokoyama K, Jennings R, Ackles P, Hood BS, Boller F. Lack of heart rate changes during attention-demanding tasks after right hemisphere lesions. Neurology. 1987;37:624–30.

    Article  CAS  PubMed  Google Scholar 

  • Zoccolotti P, Caltagirone C, Benedetti N, Gainotti G. Perturbation des réponses végétatives aux stimuli émotionnels au cours des lésions hémisphériques unilatérales. L’Encéphale. 1986;12:263–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gainotti, G. (2020). General Neurobiological Models Advanced to Explain Results Obtained Following these New Lines of Research. In: Emotions and the Right Side of the Brain. Springer, Cham. https://doi.org/10.1007/978-3-030-34090-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34090-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34089-6

  • Online ISBN: 978-3-030-34090-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics