Data Processing and Mining in Seismic While Drilling

Part of the Information Fusion and Data Science book series (IFDS)


Seismic While Drilling (SWD) is a well seismic method developed in recent years which is based on reverse vertical seismic logging. It is a newly-developed well seismic technology which combines the seismic exploration technology with petroleum drilling engineering technology. Compared to conventional VSP, SWD has its own characteristics and unique advantages in that it uses bit vibration in the process of drilling as the source for seismic measurement, without interfering with the drilling or occupying drilling time, and without any risk to the hole, especially the bit can be predicted in real-time structure details of the formation in front of the bit through the field seismic imaging processing, with the main purpose of reducing drilling risks. The key of this technology is how to collect and recover the weak bit reflection signal under strong disturbance noise and make it the equivalent formation impulse response.


Seismic While Drilling (SWD) Data processing Formation Drilling risks 


  1. 1.
    Freire SLM, Ulrych TJ. Application of singular value decomposition to vertical seismic profiling[J]. Geophysics. 1988;53(6):778–85.CrossRefGoogle Scholar
  2. 2.
    Chang WF, McMechan GA. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition[J]. Geophysics. 1986;51(1):67–84.CrossRefGoogle Scholar
  3. 3.
    Dubinsky V. Reference signal encoding for seismic while drilling measurement: U.S. Patent 6,078,868[P]. 2000-6-20.Google Scholar
  4. 4.
    Petronio L, Poletto F. Seismic-while-drilling by using tunnel boring machine noise[J]. Geophysics. 2002;67(6):1798–809.CrossRefGoogle Scholar
  5. 5.
    Poletto F, Malusa M, Miranda F, et al. Seismic-while-drilling by using dual sensors in drill strings [J]. Geophysics. 2004;69(5):1261–71.CrossRefGoogle Scholar
  6. 6.
    Masak P C, Malone D L. Inverse vertical seismic profiling using a measurement while drilling tool as a seismic source: U.S. Patent 6,094,401[P]. 2000-7-25.Google Scholar
  7. 7.
    James W. Rector III and Bob A. Hardage. Radiation pattern and seismic waves generated by a working roller-cone drill bit: Geophysics, 1992, 57, 1319-1333.CrossRefGoogle Scholar
  8. 8.
    Mueller MC. Prediction of lateral variability in fracture intensity using multicomponent shear-wave surface seismic as a precursor to horizontal drilling in the Austin Chalk [J]. Geophys J Int. 1991;107(3):409–15.CrossRefGoogle Scholar
  9. 9.
    Yilmaz Ö. Seismic data analysis: Processing, inversion, and interpretation of seismic data[M]. Soc Explor Geophys. 2001;Google Scholar
  10. 10.
    Claerbout JF. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics. 1968;33(2):264–9.CrossRefGoogle Scholar
  11. 11.
    Schuster G T, Rickett J. Daylight imaging in V (x, y, z) media[J]. Utah tomography and modeling-migration project midyear report and stanford exploration project midyear reports, 2000: 55-66.Google Scholar
  12. 12.
    Haldorsen JBU, Miller DE, Walsh JJ. Multichannel Wiener deconvolution of vertical seismic profiles[J]. Geophysics. 1994;59(10):1500–11.CrossRefGoogle Scholar
  13. 13.
    Larose E, Khan A, Nakamura Y, et al. Lunar subsurface investigated from correlation of seismic noise[J]. Geophys Res Lett. 2005;32(16)Google Scholar
  14. 14.
    Wu Z, Lu J, Han B. Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory[J]. J Appl Mech. 1998;65(4):837–43.CrossRefGoogle Scholar
  15. 15.
    Wapenaar K, Slob E, Snieder R, et al. Tutorial on seismic interferometry: Part 2—Underlying theory and new advances[J]. Geophysics. 2010;75(5):75A211–27.CrossRefGoogle Scholar
  16. 16.
    He R, Hornby B, Schuster G. 3D wave-equation interferometric migration of VSP free-surface multiples[J]. Geophysics. 2007;72(5):S195–203.CrossRefGoogle Scholar
  17. 17.
    He R, Hornby B, Schuster G. 3D wave-equation interferometric migration of VSP multiples[M]//SEG Technical Program Expanded Abstracts. Soc Explor Geophys. 2006;2006:3442–6.Google Scholar
  18. 18.
    Yu J, Schuster GT. Crosscorrelogram migration of inverse vertical seismic profile data[J]. Geophysics. 2006;71(1):S1–S11.CrossRefGoogle Scholar
  19. 19.
    Derode A, Tourin A, de Rosny J, et al. Taking advantage of multiple scattering to communicate with time-reversal antennas[J]. Phys Rev Lett. 2003;90(1):014301.CrossRefGoogle Scholar
  20. 20.
    Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Trans Antennas Propag. 1986;34(3):276–80.CrossRefGoogle Scholar
  21. 21.
    Asgedom EG, Gelius LJ, Tygel M. Seismic coherency measures in case of interfering events: A focus on the most promising candidates of higher-resolution algorithms[J]. IEEE Signal Process Mag. 2012;29(3):47–56.CrossRefGoogle Scholar
  22. 22.
    Gelius LJ, Tygel M, Takahata AK, et al. High-resolution imaging of diffractions—A window-steered MUSIC approach[J]. Geophysics. 2013;78(6):S255–64.CrossRefGoogle Scholar
  23. 23.
    Tewfik AH, Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion[J]. IEEE Trans Inf Theory. 1992;38(2):904–9.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vasconcelos I, Snieder R. Interferometry by deconvolution: Part 1—Theory for acoustic waves and numerical examples[J]. Geophysics. 2008;73(3):S115–28.CrossRefGoogle Scholar
  25. 25.
    Vasconcelos I, Snieder R. Interferometry by deconvolution: part 2—theory for elastic waves and application to drill-bit seismic imaging[J]. Geophysics. 2008;73(3):S129–41.CrossRefGoogle Scholar
  26. 26.
    Comon P. Independent component analysis, a new concept?[J]. Signal processing. 1994;36(3):287–314.CrossRefGoogle Scholar
  27. 27.
    Bernasconi G, Vassallo M. Efficient data compression for seismic-while-drilling applications[J]. IEEE Trans Geosci Remote Sens. 2003;41(3):687–96.CrossRefGoogle Scholar
  28. 28.
    Gastpar M, Dragotti PL, Vetterli M. The distributed karhunen–loeve transform[J]. IEEE Trans Inf Theory. 2006;52(12):5177–96.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kingsbury BED. Perceptually inspired signal-processing strategies for robust speech recognition in reverberant environments[M]. Berkeley: University of California; 1998.Google Scholar
  30. 30.
    Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Process Geophys. 2004;11(5/6):561–6.CrossRefGoogle Scholar
  31. 31.
    Cheng CH, Toksöz MN. Inversion of seismic velocities for the pore aspect ratio spectrum of a rock[J]. J Geophys Res Solid Earth. 1979;84(B13):7533–43.CrossRefGoogle Scholar
  32. 32.
    Alber M, Fritschen R, Bischoff M, et al. Rock mechanical investigations of seismic events in a deep longwall coal mine[J]. Int J Rock Mech Min Sci. 2009;46(2):408–20.CrossRefGoogle Scholar
  33. 33.
    Poletto F, Magnani P, Gelmi R, et al. Seismic while drilling (SWD) methodology in support to moon subsurface stratigraphy investigations[J]. Acta Astronaut. 2015;110:99–114.CrossRefGoogle Scholar
  34. 34.
    Naville C, Serbutoviez S, Throo A, et al. Seismic while drilling (SWD) techniques with downhole measurements, introduced by IFP and its partners in 1990-2000[J]. Oil Gas Sci Technol. 2004;59(4):371–403.CrossRefGoogle Scholar
  35. 35.
    Jaksch K, Giese R, Kopf M, et al. Seismic prediction while drilling (spwd): Looking ahead of the drill bit by application of phased array technology[J]. Sci Drill. 2010;9:41–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.China University of GeosciencesBeijingChina

Personalised recommendations