Skip to main content

Data Processing and Mining in Seismic While Drilling

  • Chapter
  • First Online:
Data Analytics for Drilling Engineering

Part of the book series: Information Fusion and Data Science ((IFDS))

  • 702 Accesses

Abstract

Seismic While Drilling (SWD) is a well seismic method developed in recent years which is based on reverse vertical seismic logging. It is a newly-developed well seismic technology which combines the seismic exploration technology with petroleum drilling engineering technology. Compared to conventional VSP, SWD has its own characteristics and unique advantages in that it uses bit vibration in the process of drilling as the source for seismic measurement, without interfering with the drilling or occupying drilling time, and without any risk to the hole, especially the bit can be predicted in real-time structure details of the formation in front of the bit through the field seismic imaging processing, with the main purpose of reducing drilling risks. The key of this technology is how to collect and recover the weak bit reflection signal under strong disturbance noise and make it the equivalent formation impulse response.

Contributions by Fangtao Li, Jin Wang and Qilong Xue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freire SLM, Ulrych TJ. Application of singular value decomposition to vertical seismic profiling[J]. Geophysics. 1988;53(6):778–85.

    Article  Google Scholar 

  2. Chang WF, McMechan GA. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition[J]. Geophysics. 1986;51(1):67–84.

    Article  Google Scholar 

  3. Dubinsky V. Reference signal encoding for seismic while drilling measurement: U.S. Patent 6,078,868[P]. 2000-6-20.

    Google Scholar 

  4. Petronio L, Poletto F. Seismic-while-drilling by using tunnel boring machine noise[J]. Geophysics. 2002;67(6):1798–809.

    Article  Google Scholar 

  5. Poletto F, Malusa M, Miranda F, et al. Seismic-while-drilling by using dual sensors in drill strings [J]. Geophysics. 2004;69(5):1261–71.

    Article  Google Scholar 

  6. Masak P C, Malone D L. Inverse vertical seismic profiling using a measurement while drilling tool as a seismic source: U.S. Patent 6,094,401[P]. 2000-7-25.

    Google Scholar 

  7. James W. Rector III and Bob A. Hardage. Radiation pattern and seismic waves generated by a working roller-cone drill bit: Geophysics, 1992, 57, 1319-1333.

    Article  Google Scholar 

  8. Mueller MC. Prediction of lateral variability in fracture intensity using multicomponent shear-wave surface seismic as a precursor to horizontal drilling in the Austin Chalk [J]. Geophys J Int. 1991;107(3):409–15.

    Article  Google Scholar 

  9. Yilmaz Ö. Seismic data analysis: Processing, inversion, and interpretation of seismic data[M]. Soc Explor Geophys. 2001;

    Google Scholar 

  10. Claerbout JF. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics. 1968;33(2):264–9.

    Article  Google Scholar 

  11. Schuster G T, Rickett J. Daylight imaging in V (x, y, z) media[J]. Utah tomography and modeling-migration project midyear report and stanford exploration project midyear reports, 2000: 55-66.

    Google Scholar 

  12. Haldorsen JBU, Miller DE, Walsh JJ. Multichannel Wiener deconvolution of vertical seismic profiles[J]. Geophysics. 1994;59(10):1500–11.

    Article  Google Scholar 

  13. Larose E, Khan A, Nakamura Y, et al. Lunar subsurface investigated from correlation of seismic noise[J]. Geophys Res Lett. 2005;32(16)

    Google Scholar 

  14. Wu Z, Lu J, Han B. Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory[J]. J Appl Mech. 1998;65(4):837–43.

    Article  Google Scholar 

  15. Wapenaar K, Slob E, Snieder R, et al. Tutorial on seismic interferometry: Part 2—Underlying theory and new advances[J]. Geophysics. 2010;75(5):75A211–27.

    Article  Google Scholar 

  16. He R, Hornby B, Schuster G. 3D wave-equation interferometric migration of VSP free-surface multiples[J]. Geophysics. 2007;72(5):S195–203.

    Article  Google Scholar 

  17. He R, Hornby B, Schuster G. 3D wave-equation interferometric migration of VSP multiples[M]//SEG Technical Program Expanded Abstracts. Soc Explor Geophys. 2006;2006:3442–6.

    Google Scholar 

  18. Yu J, Schuster GT. Crosscorrelogram migration of inverse vertical seismic profile data[J]. Geophysics. 2006;71(1):S1–S11.

    Article  Google Scholar 

  19. Derode A, Tourin A, de Rosny J, et al. Taking advantage of multiple scattering to communicate with time-reversal antennas[J]. Phys Rev Lett. 2003;90(1):014301.

    Article  Google Scholar 

  20. Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Trans Antennas Propag. 1986;34(3):276–80.

    Article  Google Scholar 

  21. Asgedom EG, Gelius LJ, Tygel M. Seismic coherency measures in case of interfering events: A focus on the most promising candidates of higher-resolution algorithms[J]. IEEE Signal Process Mag. 2012;29(3):47–56.

    Article  Google Scholar 

  22. Gelius LJ, Tygel M, Takahata AK, et al. High-resolution imaging of diffractions—A window-steered MUSIC approach[J]. Geophysics. 2013;78(6):S255–64.

    Article  Google Scholar 

  23. Tewfik AH, Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion[J]. IEEE Trans Inf Theory. 1992;38(2):904–9.

    Article  MathSciNet  Google Scholar 

  24. Vasconcelos I, Snieder R. Interferometry by deconvolution: Part 1—Theory for acoustic waves and numerical examples[J]. Geophysics. 2008;73(3):S115–28.

    Article  Google Scholar 

  25. Vasconcelos I, Snieder R. Interferometry by deconvolution: part 2—theory for elastic waves and application to drill-bit seismic imaging[J]. Geophysics. 2008;73(3):S129–41.

    Article  Google Scholar 

  26. Comon P. Independent component analysis, a new concept?[J]. Signal processing. 1994;36(3):287–314.

    Article  Google Scholar 

  27. Bernasconi G, Vassallo M. Efficient data compression for seismic-while-drilling applications[J]. IEEE Trans Geosci Remote Sens. 2003;41(3):687–96.

    Article  Google Scholar 

  28. Gastpar M, Dragotti PL, Vetterli M. The distributed karhunen–loeve transform[J]. IEEE Trans Inf Theory. 2006;52(12):5177–96.

    Article  MathSciNet  Google Scholar 

  29. Kingsbury BED. Perceptually inspired signal-processing strategies for robust speech recognition in reverberant environments[M]. Berkeley: University of California; 1998.

    Google Scholar 

  30. Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Process Geophys. 2004;11(5/6):561–6.

    Article  Google Scholar 

  31. Cheng CH, Toksöz MN. Inversion of seismic velocities for the pore aspect ratio spectrum of a rock[J]. J Geophys Res Solid Earth. 1979;84(B13):7533–43.

    Article  Google Scholar 

  32. Alber M, Fritschen R, Bischoff M, et al. Rock mechanical investigations of seismic events in a deep longwall coal mine[J]. Int J Rock Mech Min Sci. 2009;46(2):408–20.

    Article  Google Scholar 

  33. Poletto F, Magnani P, Gelmi R, et al. Seismic while drilling (SWD) methodology in support to moon subsurface stratigraphy investigations[J]. Acta Astronaut. 2015;110:99–114.

    Article  Google Scholar 

  34. Naville C, Serbutoviez S, Throo A, et al. Seismic while drilling (SWD) techniques with downhole measurements, introduced by IFP and its partners in 1990-2000[J]. Oil Gas Sci Technol. 2004;59(4):371–403.

    Article  Google Scholar 

  35. Jaksch K, Giese R, Kopf M, et al. Seismic prediction while drilling (spwd): Looking ahead of the drill bit by application of phased array technology[J]. Sci Drill. 2010;9:41–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, Q. (2020). Data Processing and Mining in Seismic While Drilling. In: Data Analytics for Drilling Engineering. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-34035-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34035-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34034-6

  • Online ISBN: 978-3-030-34035-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics