Skip to main content

Measurement and Analysis of Drillstring Dynamics

  • Chapter
  • First Online:
Data Analytics for Drilling Engineering

Part of the book series: Information Fusion and Data Science ((IFDS))

  • 731 Accesses

Abstract

We shown that drilling dynamics is a crucial problem must be attached great importance to. Our innovation lies in combining actual measurement with theoretical modeling. Two evaluation methods are compared systematically, such as theoretical and measurement methods. In this chapter, our investigations concern the dynamics of drilling, unveiling a chaotic regime and suggesting practical ways of improving current drilling techniques. The reveal of chaos provides a new way to detect early fatigue cracks as weak signals in a noisy environment to reduce engineering cost and the possibility of disaster. Data from all nine fields in China are used in our studies. Proposes a theoretical model for drilling dynamics, and a real drilling system is developed to validate the theoretical dynamical behaviour. The existence of chaos in drilling may open a new concept of drilling chaos in the solid flow mechanics that will benefit to both the physicists and the drilling engineers.

Contributions by Qilong Xue and Jin Wang.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritto TG, Escalante MR, Sampaio R, Rosales MB. Drillstring horizontal dynamics with uncertainty on the frictional force. J Sound Vib. 2013;332(1):145–53.

    Article  Google Scholar 

  2. Qilong X, Leung H, Ruihe W, Baolin L, Leilei H, Shenglai G. The chaotic dynamics of drilling. Nonlinear Dyn. 2016;83(3):2003–18.

    Google Scholar 

  3. Belokobyl’skii SV, Prokopov VK. Friction induced self-excited vibration of drill rig with exponential drag law [J]. Sov Appl Mech. 1982;18(12):1134–8.

    Article  Google Scholar 

  4. Zamudio CA, Tlusty JL, Dareing DW. Self-excited vibrations in drillstrings [C]. SPE 16661, 1987. SPE annual technical conference and exhibition, 27–30 September, Dallas, Texas.

    Google Scholar 

  5. Brett JF. The genesis of bit-induced torsional Drillstring vibrations [J]. SPE Drill Eng. 1991;7(3):168–74.

    Article  Google Scholar 

  6. Dowson R, Lin YQ, Spanos PD. Drill string stick-slip oscillations [C]. Spring conference of the society for experimental mechanics, Houston, Texas, June 14–19, 1987.

    Google Scholar 

  7. Lin YQ, Wang YH. Stick-slip vibration of drill strings [J]. Trans ASME J Eng Ind. 1991;113(1):38–43.

    Google Scholar 

  8. Bailey JJ. An analytical study of drill-string vibration[J]. ASME J Eng Ind [J]. 1960;82(2):122–8.

    Article  Google Scholar 

  9. Elsayed MA, Phung CC. Modeling of drillstrings [C]. Proceedings of the 24th ASME international conference on offshore mechanics and arctic engineering. Halkidiki, 2005.

    Google Scholar 

  10. Lubinski A. Dynamic loading of Drillpipe during tripping[J]. J Pet Technol. 1988;40(8):975–83.

    Article  Google Scholar 

  11. Aadnoy BS, Fazaelizadeh M, Hareland G. A 3D analytical model for wellbore friction [J]. J Can Pet Technol. 2010;49(10):25–36.

    Article  MATH  Google Scholar 

  12. Yigit AS, Christoforou AP. Coupled axial and transverse vibrations of oil well drillstrings [J]. J Sound Vib. 1996;195(4):617–27.

    Article  Google Scholar 

  13. Yigit AS, Christoforou AP. Coupled torsional and bending vibrations of drillstrings subject to impact with friction [J]. J Sound Vib. 1998;215(1):167–81.

    Article  Google Scholar 

  14. Khulief YA, Al-Naser H. Finite element dynamic analysis of drillstrings [J]. Finite Elem Anal Des. 2005;41(13):1270–88.

    Article  Google Scholar 

  15. Sampaio R, Piovan MT, VeneroLozano G. Coupled axial/torsional vibrations of drill-strings by means of non-linear model [J]. Mech Res Commun. 2007;34(5):497–502.

    Article  MATH  Google Scholar 

  16. Kapitaniak M, Hamaneh VV, Chávez JP, et al. Unveiling complexity of drill-string vibrations: experiments and modelling[J]. Int J Mech Sci, 2015, s101–102:324–337.

    Google Scholar 

  17. Gupta SK, Wahi P. Global axial-torsional dynamics during rotary drilling [J]. J Sound Vib. 2016;375(4):332–52.

    Article  Google Scholar 

  18. Huang W, Gao D, Wei S, Li X. A generalized quasi-static model of drill string system [J]. J Nat Gas Sci Eng. 2015;23(3):208–20.

    Article  Google Scholar 

  19. Lian Z, Zhang Q, Lin T, Wang F. Experimental and numerical study of drill string dynamics in gas drilling of horizontal wells [J]. J Nat Gas Sci Eng. 2015;27(3):1412–20.

    Article  Google Scholar 

  20. Jones S, Feddema C, Castro J. Fully mechanical vertical drilling system delivers RSS performance in vertical drilling applications while providing an economical alternative conventional rotary steerable systems set-Up for vertical hold mode [C]. SPE-178788, 2016, IADC/SPE Drilling Conference and Exhibition, 1–3 March, Fort Worth, Texas.

    Google Scholar 

  21. Warren T. Rotary steerable technology conclusion: implementation issues concern operators [J]. Oil Gas J. 1998;96(12):23–4.

    Google Scholar 

  22. Wang R, Xue Q, et al. Torsional vibration analysis of push-the-bit rotary steerable drilling system [J]. Meccanica. 2014;49(7):1601–15.

    Article  MATH  Google Scholar 

  23. Hoffmann OJ, Jain JR, Spencer RW, Makkar N. Drilling dynamics measurements at the drill bit to address Today’s challenges. IEEE international instrumentation and measurement technology conference: smart measurements for a sustainable environment, Graz, p. 1772–1777, 13–16, May 2012.

    Google Scholar 

  24. Nayfeh AH, Balakumar B. Applied nonlinear dynamics: analytical, computational, and experimental methods. Weinheim: Wiley-VCH; 1995.

    Book  MATH  Google Scholar 

  25. Ertas D, Bailey JR, Wang L, et al. Drill string mechanics model for surveillance, root cause analysis, and mitigation of torsional and axial vibrations. Louisiana: Society of Petroleum Engineers; 2013.

    Google Scholar 

  26. Jansen JD. Nonlinear rotor dynamics as applied to oil well drillstring vibrations. J Sound Vib. 1991;147(1):115–35.

    Article  Google Scholar 

  27. Navarro-Lopez EM, Cortes D. Avoiding harmful oscillations in a drillstring through dynamical analysis. J Sound Vib. 2007;307:152–71.

    Article  Google Scholar 

  28. Millheim K, Jordan S, Ritter CJ. Bottom-hole assembly analysis using the finite-element method. SPE J. 1978;30(2):265–74.

    Google Scholar 

  29. Costa FS, Rebeiro PR. Finite element modeling of the mechanical behavior of unbalanced drill collars. Rio de Janeiro: Society of Petroleum Engineers; 1997.

    Google Scholar 

  30. Ledgerwood LW, Jain JR, OJ H®m, et al. Downhole measurement and monitoring lead to an enhanced understanding of drilling vibrations and polycrystalline diamond compact bit damage. Louisiana: Society of Petroleum Engineers; 2013.

    Book  Google Scholar 

  31. Raap C, Craig AD, Graham RB. Drill pipe dynamic measurements provide valuable insight into drill string dysfunctions. Ohio: Society of Petroleum Engineers; 2011.

    Book  Google Scholar 

  32. Oueslati H, Jain JR, Reckmann H, et al. New insights into drilling dynamics through high- frequency vibration measurement and modeling. Louisiana: Society of Petroleum Engineers; 2013.

    Book  Google Scholar 

  33. Chien ML, Nicholas V, Hamad K, et al. Parametric studies on drill-string motions. Int J Mech Sci. 2012;54(1):260–8.

    Article  Google Scholar 

  34. Besaisow AA, Payne ML. A study of excitation mechanisms and resonances inducing BHA vibrations. New Orleans: Society of Petroleum Engineers; 1986.

    Google Scholar 

  35. Schen AE, Snell AD, Stanes BH. Optimization of bit drilling performance using a new small vibration logging tool. Amsterdam: Society of Petroleum Engineers; 2005.

    Book  Google Scholar 

  36. Field DJ, Swarbrick AJ, Haduch GA. Techniques for successful application of dynamic analysis in the prevention of field-induced vibration damage in MWD tools. Amsterdam: Society of Petroleum Engineers; 1993.

    Book  Google Scholar 

  37. Wolf SF, Zacksenhouse M, Arian A. Field measurements of downhole drillstring vibrations. Las Vegas: Society of Petroleum Engineers; 1985.

    Book  Google Scholar 

  38. Lutz J, Raynaud H, Gstalder S, et al. Dynamics theory of drilling and instantaneous logging. Los Angeles: Society of Petroleum Engineers; 1971.

    Google Scholar 

  39. Stephen WL, Mitch W, Aaron E, et al. Stick-slip detection and friction factor testing using surface-based torque and tension measurements. Netherlands: Society of Petroleum Engineers; 2014.

    Google Scholar 

  40. Xue Q, Leung H, Huang L, Zhang R, Liu B, Wang J, Li L. Modeling of torsional oscillation of drillstring dynamics. Nonlinear Dyn. 2019;96(1):267–83.

    Article  Google Scholar 

  41. Jansen JD. Nonlinear dynamics of oil well Drillstrings. PhD thesis, Delft University, Netherlands, 1993. p. 38–55.

    Google Scholar 

  42. Spanos PD, Sengupta AK, Cunningham RA, Paslay PR. Modeling of roller cone bit lift-off dynamics in rotary drilling. J Energy Resour Technol. 1995;117(3):197–207.

    Article  Google Scholar 

  43. Lanczos C. The variational principles of mechanics. Dovers Publications, Inc. 1970, p. 90–106.

    Google Scholar 

  44. Zhao G, Gong W. Fundamentals of drilling mechanics. China: Petroleum Industry Press; 1988.

    Google Scholar 

  45. Qilong X, Ruihe W, Feng S. Study on lateral vibration of rotary steerable drilling system. J Vibroeng. 2014;16(6):2702–11.

    Google Scholar 

  46. Kennel MB, Brown R, Abarbanel HDI. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992;45(6):3403–11.

    Article  Google Scholar 

  47. Cao L. Practical method for determining the minimum embedding dimension of a scalar time series [J]. Physica D. 1997;110(1–2):43–50.

    Article  MATH  Google Scholar 

  48. Russel MK, Russel AW. Surveying of boreholes. United States Patent US4163324. 1979.

    Google Scholar 

  49. Yezid IA, Yonnellybeth M, Andre N. Vibration risk index offers tool for preventing drillstring failure. World Trends and Technology for Offshore Oil and Gas Operations, 2011.

    Google Scholar 

  50. Macpherson JD, Mason JS, Kingman JEE. Surface measurement and analysis of drillstring vibrations while drilling. Amsterdam: Society of Petroleum Engineers; 1993.

    Book  Google Scholar 

  51. Dubinsky VSH, Henneuse HP, Kirkman MA. Surface monitoring of downhole vibrations: Russian, European, and American approaches. Cannes: Society of Petroleum Engineers; 1992.

    Google Scholar 

  52. Ledgerwood LW, Ho®mann OJ, Jain JR, et al. Downhole vibration measurement, monitoring, and modeling reveal stick/slip as a primary cause of PDC-bit damage in today. Florence: Society of Petroleum Engineers; 2010.

    Book  Google Scholar 

  53. Zannoni SA, Cheatham CA, Chen CKD, et al. Development and field testing of a new downhole MWD drillstring dynamics sensor. Houston: Society of Petroleum Engineers; 1993.

    Book  Google Scholar 

  54. Chen DCK, Smith M, LaPierre S. Integrated drilling dynamics system closes the model measure optimize loop in real time. Amsterdam: Society of Petroleum Engineers; 2003.

    Book  Google Scholar 

  55. Akinniranye G, Megat A, Elsweisy H, et al. Implementation of a shock and vibration mitigation process: achieving real-time solutions and savings. SPE J. 2009;24(2):1–10.

    Google Scholar 

  56. Ashley DK, McNary XM, Tomlinson JC. Extending BHA life with multi-axis vibration measurements. Society of Petroleum Engineers, Amsterdam, 2001.

    Google Scholar 

  57. Adam B, Lojini L, Junichi S, et al. Continuous high-frequency measurements of the drilling process provide new insights into drilling system response and transitions between vibration modes. Amsterdam: Society of Petroleum Engineers; 2014.

    Google Scholar 

  58. Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Math Comput. 1965;19:297–301.

    Article  MathSciNet  MATH  Google Scholar 

  59. Morlet J. Continuous wavelet transform and continuous multiscale analysis. J Math Anal Appl. 2003;169(1):179–96.

    MathSciNet  Google Scholar 

  60. Craig AD, Hanley C, McFarland B, et al. A proven approach to mitigating drilling vibration problems in offshore Western Australia. Doha: International Petroleum Technology Conference; 2009.

    Book  Google Scholar 

  61. Welch PD. The use of fast Fourier transforms for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. 1967;15(62):70–3.

    Article  Google Scholar 

  62. Kennel MB, Brown R, Abarbanel HDI. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992;45(6):3403–11.

    Article  Google Scholar 

  63. Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A. 1986;33(2):34–40.

    Article  MathSciNet  MATH  Google Scholar 

  64. Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D. 1997;110(1–2):43–50.

    Article  MATH  Google Scholar 

  65. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D. 1983;9(1–2):189–208.

    Article  MathSciNet  MATH  Google Scholar 

  66. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D. 1985;16(3):285–317.

    Article  MathSciNet  MATH  Google Scholar 

  67. Rosenstein MT, Collins JJ, De Luca CJ. Apractical method for calculating largest Lyapunov exponents from small data sets. Physica D. 1993;65(1–2):117–34.

    Article  MathSciNet  MATH  Google Scholar 

  68. Rainer H, Kantz H, Schreiber T. Practical implementation of nonlinear time series methods: the TISEAN package. Chaos. 1999;9(2):413–35.

    Article  MATH  Google Scholar 

  69. Schreiber T. Detecting and analyzing nonstationarity in a time series with nonlinear cross-predictions. Phys Rev Lett. 1997;78(5):843–6.

    Article  Google Scholar 

  70. Perc M. Nonlinear time series analysis of the human electrocardiogram. Eur J Phys. 2005;26(5):757–68.

    Article  Google Scholar 

  71. Kodba S, Perc M, Marhl M. Detecting chaos from a time series. Eur J Phys. 2005;26(1):205–15.

    Article  Google Scholar 

  72. Kostić S, et al. Stochastic nature of earthquake ground motion. Physica A. 2013;392:4134–45.

    Article  Google Scholar 

  73. Kaplan DT, Glass L. Direct test for determinism in a time series. Phys Rev Lett. 1992;68(4):427–30.

    Article  Google Scholar 

  74. Chen SL, Blackwood K, Lamine E. Field investigation of the effects of stick–slip, lateral and whirl vibrations on roller-cone bit performance. SPE Drill Complet. 2002;17(1):15–20.

    Article  Google Scholar 

  75. Christoforou AP, Yigit AS. Fully coupled vibrations of actively controlled drillstrings. J Sound Vib. 2003;267(5):1029–45.

    Article  Google Scholar 

  76. L.W. Ledgerwood III, et al. Downhole vibration measurement, monitoring and Modeling reveal stick-slip as a primary cause of PDC bit damage in Today’s applications. SPE annual technical conference and exhibition, Florence. SPE-134488-MS, 19–22 2010.

    Google Scholar 

  77. Yezid A, Ashley F. Quantification of Drillstring integrity failure risk using real-time vibration measurements. SPE J. 2012;27(2):216–22.

    Google Scholar 

  78. Altmann J, Mathew J. Multiple band-pass autoregressive demodulation for rolling element bearing fault diagnosis. Mech Syst Signal Process. 2001;15(5):963–77.

    Article  Google Scholar 

  79. Junsheng C, Dejie Y, Yu Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis. Mech Syst Signal Process. 2007;21(2):668–77.

    Article  Google Scholar 

  80. Ocak H, Loparo KA, Discenzo FM. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics. J Sound Vib. 2007;302(4–5):951–61.

    Article  Google Scholar 

  81. Müller PC, Bajkowski J, Söffker D. Chaotic motions and fault detection in a cracked rotor. Nonlinear Dyn. 1994;5(2):233–54.

    Google Scholar 

  82. Zhao Z, Wang F-L, Jia M-X, Wang S. Intermittent-chaos-and-cepstrum-analysis-based early fault detection on shuttle valve of hydraulic tube tester. IEEE Trans Ind Electron. 2009;56(7):2764–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, Q. (2020). Measurement and Analysis of Drillstring Dynamics. In: Data Analytics for Drilling Engineering. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-34035-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34035-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34034-6

  • Online ISBN: 978-3-030-34035-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics