Advertisement

Analysis of Vibration Noise on the Fiber-Optic Gyroscope

Chapter
  • 358 Downloads
Part of the Information Fusion and Data Science book series (IFDS)

Abstract

The random noise of the sensor is the main cause of the error in navigation accuracy. In addition, strong downhole vibration will generate greater random noise of fiber-optic gyroscope and accelerometer during MWD operation. The random noise in vibration features concerning time series mutation, slowness and periodicity in its varying. The results show a wide internal noise band and the changing of the noise over time. Considering all these features, this section explores with the dynamic Allan variance method the dynamic characteristics of the random noise produced by fiber-optic gyroscope and accelerometer in vibration, to offer theoretical guidance for improving the environmental adaptability of sensors in vibration and offer theoretical support for noise modeling.

Keywords

Allan variance Navigation accuracy Fiber-optic gyroscope Dynamic characteristics 

References

  1. 1.
    Allan DW. Statistics of atomic frequency standards. Proc IEEE. 1966;54(2):221–30.CrossRefGoogle Scholar
  2. 2.
    Lawrence CN, Pines DJ. Characterization of ring laser gyro performance using the Allan variance method. J Guid Control Dyn. 1997;20:211–4.CrossRefGoogle Scholar
  3. 3.
    Tehrani MM. Ring laser gyro data analysis with cluster sampling technique. Proceeding SPIE 1983, 0412,  https://doi.org/10.1117/12.935818.
  4. 4.
    IEEE Standard Specification Format Guide and Test Procedure of Single Axis Interferometric Fiber Optic Gyros; IEEE Std 952-1997; The Institute of Electrical and Electronics Engineers, Inc.: New York, 16 September 1997.Google Scholar
  5. 5.
    Blaser JP, Lockerbie NA, Paik HJ, et al. Eotvos, an inertial instrument for testing the equivalence principle[J]. Adv Space Res. 2003;32(7):1433–6.CrossRefGoogle Scholar
  6. 6.
    Galleani L, Tavella P. The characterization of clock behavior with the dynamic allan variance, proceedings of the 2003IEEE international frequency control symposium and PDA exhibition jointly with the 17th European frequency and time Forum 2003, pp. 239–244.Google Scholar
  7. 7.
    Galleani L, Tavella P. Tracking nonstationarities in clock noises using the dynamic Allan variance. Proceeding joint FCS-PTTI meeting August 2005, Vancouver, 2005, pp. 392–396.Google Scholar
  8. 8.
    Galleani L, Tavella E. Interpretation of the dynamic Allan variance of nonstationary clock data. IEEE FCS-EFTF 2007, May 29–June 1 2007, Geneva, pp. 992–997.Google Scholar
  9. 9.
    Nunzi E, Galleani L, Tavella P. Detection of anomalies in the behavior of atomic clocks. IEEE Trans Instrum Meas. 2007;56(2):523–8.CrossRefGoogle Scholar
  10. 10.
    Sesia I, Galleani L Tavella P. Implementation of the dynamic Allan variance for the Galileo system test bed V2. Frequency control symposium, 2007 joint with the 21st European frequency and time Forum (2007) 946–949.Google Scholar
  11. 11.
    Sesia I, Galleani L, Tavella P. Implementation of the dynamic allan variance for the galileo system test bed V2. 2007, pp. 946–949.Google Scholar
  12. 12.
    Galleani L, Tavella P. The dynamic Allan variance. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(3):450–64.CrossRefGoogle Scholar
  13. 13.
    Galleani L, Tavella P. Fast computation of the dynamic Allan variance. Proceeding IEEE FCS-EFTF, 2009, pp. 685–687.Google Scholar
  14. 14.
    Galleani L. The dynamic Allan variance II: a fast computational algorithm. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;57(1):182–8.CrossRefGoogle Scholar
  15. 15.
    Galleani L. The dynamic Allan variance III: confidence and detection surfaces. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(8):1550–8.CrossRefGoogle Scholar
  16. 16.
    Sesia I, Galleani L, Tavella P. Application of the dynamic Allan Varinacne for the characterization of space clock behavior. IEEE Trans Aerosp Electron Syst. 2011;47(2):884–95.CrossRefGoogle Scholar
  17. 17.
    Galleani L, Tavella P. Characterization of atomic clock anomalies in the dynamic allan variance domain, 2013 Joint UFFC, EFTF and PFM symposium, pp. 654–648.Google Scholar
  18. 18.
    Guo W, Xinwu L. Research on stochastic errors of dithered ring laser gyroscope based on dynamic Allan variance [J]. Chin J Lasers. 2010;37(12):2975–9.CrossRefGoogle Scholar
  19. 19.
    Yin L, Xinlin C, Shenming S. Dynamic allan variance analysis for the drift error of fiber optical gyroscope [J]. J Optoelectron Laser. 2008;19(2):183–6.Google Scholar
  20. 20.
    Xuyou L, Na Z. Analysis of dynamic characteristics of a fiber-optic gyroscope based on dynamic Allan variance [J]. J Harbin Eng Univ. 2011;32(2):183–7.Google Scholar
  21. 21.
    Na Z, Xuyou L. Research on theoretical improvement of dynamic allan variance and its application [J]. Acta Opt Sin. 2011;31(11):1–6.Google Scholar
  22. 22.
    Stein SR. The Allan variance-challenges and opportunities. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(2):540–7.CrossRefGoogle Scholar
  23. 23.
    Wang L, Zhang C, Lin T, Li X, Wang T. Characterization of a Fiber optic gyroscope in a measurement while drilling system with the dynamic Allan variance. Measurement. 2015;75:263–72.CrossRefGoogle Scholar
  24. 24.
    El-Sheimy N, Hou H, Niu X. Analysis and modeling of inertial sensors using Allan variance [J]. IEEE Trans Instrum Meas. January 2008;57(1):140–9.CrossRefGoogle Scholar
  25. 25.
    IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros, IEEE Standard 952, 1997, pp. 62–73.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.China University of GeosciencesBeijingChina

Personalised recommendations