Skip to main content

Signal Detection and Processing of Downhole Information Transmission

  • Chapter
  • First Online:

Part of the book series: Information Fusion and Data Science ((IFDS))

Abstract

We introduced five types of information transmission method for Measurement While Drilling (MWD): cable method, drilling fluid pulse method, acoustic method and electromagnetic wave method and the latest technology of intelligent drill pipe at present. With the application of advanced drilling technologies such as rotary steering drilling and geosteering drilling, the real-time measurement and transmission of a large number of downhole parameters put forward higher requirements on the information transmission rate. Lower transmission rate has become the bottleneck of parameter expansion for measurement. Intelligent drill pipe (Intelli Pipe) is now the latest downhole signal transmission technology with the highest transmission rate. The communication rate can reach up to 2Mbps, and the stable communication rate can reach 56 kbps, which is too much higher than the current electromagnetic wave or mud pulse transmission applied in MWD, but high manufacturing costs are the main factors that constrain its development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wallace RG, High Data Rate MWD. Mud pulse telemetry [Z]. U.S. Department of Energy’s natural gas conference. Houston: Texas; 1997.

    Google Scholar 

  2. Warren T. Rotary steerable technology conclusion: implementation issues concern operators [J]. Oil and gas Journal. 1998;96(12):23–4.

    Google Scholar 

  3. Perry CA, Burgess DE, Turner WE. Rotary Pulser for transmitting information to the surface from a drill string down hole in a well [P]. In: United States: US7327634B2; 2008.

    Google Scholar 

  4. Malone D, Johnson M. Logging while drilling tools, systems, and methods capable of transmitting Data at a plurality of different frequencies [P]. United States. 1994;5375098

    Google Scholar 

  5. Hahn D, Peters V, Rouatbi C, Eggers H. Oscillating shear valve for mud pulse telemetry and associated methods of use [P]. In: United States: US6975244B2; 2005.

    Google Scholar 

  6. Shah Vimal GW, Johnson DH, Sinanovic S. Design Considerations for a New High Data LWD Acoustic Telemetry System[R]. SPE. 88636

    Google Scholar 

  7. Dopf AR, Camwell PL, Siemens WL, et al. Apparatus for receiving downhole acoustic signals: US; 2005.

    Google Scholar 

  8. Camwell PL, Neff JM. Telemetry transmitter optimization using time domain reflectometry: US; 2011.

    Google Scholar 

  9. James Michael Neff, Paul Leonard Camwell. Field Test Results of An Acoustic Telemetry MWD System, SPE/IADC Drilling Conference, 20–22 February, Amsterdam, The Netherlands,2007.

    Google Scholar 

  10. Reeves ME, Camwell PL, Mcrory J. High speed acoustic telemetry network enables real-time along string measurements, greatly reducing drilling risk[C]. In: Offshore Europe, vol. 6-8. Aberdeen: September; 2011.

    Google Scholar 

  11. Reeves M, Smith D G, Groves D, et al. Unique Acoustic Telemetry Network With Distributed Pressure Measurement Nodes Enables Accurate Real-Time Analysis of Sweep Effectiveness[C]. SPE Annual Technical Conference and Exhibition, New Orleans,,2013.

    Google Scholar 

  12. Weisbeck D, Blackwell G, Park D, et al. Case history of first use of extended-range EM-MWD in offshore. Underbalanced Drilling[R]. SPE/IADC. 2002;74461

    Google Scholar 

  13. Anonymous. New tool extends MWD to underbalanced wells[J]. Drilling Contractor, March/April 2005, issue:24–25.

    Google Scholar 

  14. Bhagwan J. Trofimenkoff. Electric drill stem telemetry. IEEE trans geoscience and remote sensing. IEEE. 1982;GE-20:193–7.

    Google Scholar 

  15. Perry A. Fischer. Interactive drilling up-to-data drilling technology[J]. Oil&Gas Science and Technology. 2004;59:343–56.

    Google Scholar 

  16. Montaron BA, Hache JMD. Improvements in MWD telemetry: “Right Data at the right time” [A]. PE Asia Pacific oil and gas conference[C]. Society of Petroleum Engineers. 1993:337–46.

    Google Scholar 

  17. Chin WC. MWD Siren Pulser Fluid Mechanics[J]. Petrophysics. 2004;45(4):363–79.

    Google Scholar 

  18. Hutin R, Tennet RW, Kashikar SV. New mud pulse telemetry techniques for Deepwater applications and improved real-time data capabilities [R]. SPE. 2001:67762.

    Google Scholar 

  19. Zielke W. Frequency-dependent friction in transient pipe flow [J]. ASME J Basic Eng. 90(1):109–15.

    Google Scholar 

  20. Vardy AE, Brown JMB. Transient turbulent friction in smooth pipe flows[J]. J Sound Vib. 2003;259(5):1011–36.

    Article  Google Scholar 

  21. Lee HY. Drillstring axial vibration and wave propagation in boreholes [D]. Gambridge. Massachusetts institute of Technology. 1991;

    Google Scholar 

  22. Lea SH. A propagation of coupled pressure waves in borehole with Drillstring[C]. SPE. 1996;37156:963–72.

    Google Scholar 

  23. Acharyya M, Kundu MK. Document image segmentation using wavelet scale-space features [J]. IEEE Tran On Circuits and Systems for Video Technology. 2002;12(12):1117–27.

    Article  Google Scholar 

  24. Han JH, Kim YJ, Karkoub M. Modeling of wave propagation in drill strings using vibration transfer matrix methods[J]. J Acoust Soc Am. 2013;134(3):1920–31.

    Article  Google Scholar 

  25. Douglas S. Drumheller, Acoustical Properties of Drill Strings, Jul. 1988, 5–25.

    Google Scholar 

  26. Douglas S. Drumheller, attenuation of sound waves in drill strings, 2387 J. Acoust Soc Am N (4), October 1993.

    Google Scholar 

  27. Jia D, Cui C, Wang S. Propagation properties of acoustic waves inside periodic pipelines [J]. Inf Sci. 2014;275(12):360–9.

    Article  Google Scholar 

  28. Pighi R, Franceschini M, Ferrari G, et al. Fundamental performance limits of communications systems impaired by impulse noise[J]. IEEE Trans Commun. 2009;57(1):171–82.

    Article  Google Scholar 

  29. Ghosh M. Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems [J]. IEEE Trans Commun. 1996;44(2):145–7.

    Article  MathSciNet  Google Scholar 

  30. Trofimenkoff FN, Segal M, Klassen A, et al. Characterization of EM downhole-to-surface communication links [J]. Geoscience and remote sensing. TEES Transactions on. 2000;38(6):2539–48.

    Google Scholar 

  31. Wei L, Zaiping N, Xiangyang S, et al. Numerical modeling for excitation and coupling transmission of near field around the metal drilling pipe in Lossy formation [J]. Geoscience and remote sensing. IEEE Transactions on. 2014;52(7):3862–71.

    Google Scholar 

  32. Poh Kheong V, Rodger D, Marshall A. Modeling an electromagnetic telemetry system for signal transmission in oil fields [J]. Magnetics, IEEE Transactions on. 2005;41(5):2008–11.

    Article  Google Scholar 

  33. Wait JR, Hill DA. Theory of transmission of electromagnetic waves along a drill rod in conducting rock [J]. Geoscience Electronics, IEEE Transactions on. 1979;17(2):21–4.

    Article  Google Scholar 

  34. Jing C, Yong L. Study on underground transmission of electromagnetic measurement while drilling (EM-MWD) [J]. Electronic measurement Technology. 2009;32(10):4–7.

    Google Scholar 

  35. Mansure AJ, Keefe RG, Caffey TWH, Bartel LC, Ballard S. The surface area modulation downhole telemetry system for measurement while drilling. United States: N. p. Web. 1998;

    Google Scholar 

  36. Michael J, Prideco G, David RH. Intelligent Drill Pipe Creates the Drilling Network [R]. SPE. 80454

    Google Scholar 

  37. Fischer PA. Interactive Drilling Up-to-data Drilling Technology[J]. Oil&Gas. Science and Technology. 2004;59:343–56.

    Google Scholar 

  38. Janzisz B, Darizisz C. High frequency transformer modeling[A]. 2001. IEEE International Symposium on Circuits and Systems[C] Sydney. 2001:676–9.

    Google Scholar 

  39. Tomazic S. Comments on spectral efficiency of VMSK[J]. IEEE Trans Broadcast. 2002;48(3):61–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, Q. (2020). Signal Detection and Processing of Downhole Information Transmission. In: Data Analytics for Drilling Engineering. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-34035-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34035-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34034-6

  • Online ISBN: 978-3-030-34035-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics