Skip to main content

Constraint Generation Algorithm for the Minimum Connectivity Inference Problem

  • Conference paper
  • First Online:
Analysis of Experimental Algorithms (SEA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11544))

Included in the following conference series:

Abstract

Given a hypergraph H, the Minimum Connectivity Inference problem asks for a graph on the same vertex set as H with the minimum number of edges such that the subgraph induced by every hyperedge of H is connected. This problem has received a lot of attention these recent years, both from a theoretical and practical perspective, leading to several implemented approximation, greedy and heuristic algorithms. Concerning exact algorithms, only Mixed Integer Linear Programming (MILP) formulations have been experimented, all representing connectivity constraints by the means of graph flows. In this work, we investigate the efficiency of a constraint generation algorithm, where we iteratively add cut constraints to a simple ILP until a feasible (and optimal) solution is found. It turns out that our method is faster than the previous best flow-based MILP algorithm on random generated instances, which suggests that a constraint generation approach might be also useful for other optimization problems dealing with connectivity constraints. At last, we present the results of an enumeration algorithm for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The quotient graph w.r.t. \(X_1\), \(\dots \), \(X_r\) has r vertices \(v_1\), \(\dots \), \(v_r\), and an edge \(v_iv_j\) whenever there is an edge between a vertex of \(X_i\) and a vertex of \(X_j\), \(i \ne j\).

  2. 2.

    A non-trivial partition of a set V is a partition where each set is different from \(\emptyset \) and V.

  3. 3.

    We used the implementation of [10] provided by their authors.

References

  1. Agarwal, D., Araujo, J.-C.S., Caillouet, C., Cazals, F., Coudert, D., Pérennes, S.: Connectivity inference in mass spectrometry based structure determination. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 289–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_25

    Chapter  Google Scholar 

  2. Agarwal, D., Araújo, J.C.S., Caillouet, C., Cazals, F., Coudert, D., Pérennes, S.: Unveiling contacts within macro-molecular assemblies by solving minimum weight connectivity inference problems. Mol. Cell. Proteomics 14, 2274–2284 (2015)

    Article  Google Scholar 

  3. Angluin, D., Aspnes, J., Reyzin, L.: Inferring social networks from outbreaks. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI), vol. 6331, pp. 104–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16108-7_12

    Chapter  MATH  Google Scholar 

  4. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962)

    Article  MathSciNet  Google Scholar 

  5. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for hypergraphs. J. Discrete Algorithms 14, 248–261 (2012). Proceedings of the 21st International Workshop on Combinatorial Algorithms (IWOCA 2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Komusiewicz, C., Niedermeier, R., Sorge, M., Suchý, O., Weller, M.: Polynomial-time data reduction for the subset interconnection design problem. SIAM J. Discrete Math. 29(1), 1–25 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub-sub with many topics. In: Proceedings of the 26th Annual ACM Symposium on Principles of Distributed Computing (PODC 2007), pp. 109–118 (2007)

    Google Scholar 

  8. Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with structured item graphs. In: Proceedings of the 19th National Conference on Artifical Intelligence, AAAI 2004, pp. 212–218 (2004)

    Google Scholar 

  9. Dar, M.A., Fischer, A., Martinovic, J., Scheithauer, G.: A computational study of reduction techniques for the minimum connectivity inference problem. In: Singh, V.K., Gao, D., Fischer, A. (eds.) Advances in Mathematical Methods and High Performance Computing. AMM, vol. 41, pp. 135–148. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02487-1_7

    Chapter  Google Scholar 

  10. Dar, M.A., Fischer, A., Martinovic, J., Scheithauer, G.: An improved flow-based formulation and reduction principles for the minimum connectivity inference problem. Optimization 0(0), 1–21 (2018)

    MATH  Google Scholar 

  11. Du, D.Z., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discrete Math. 1(4), 416–424 (1988)

    Article  MathSciNet  Google Scholar 

  12. Du, D.Z., Miller, Z.: On complexity of subset interconnection designs. J. Global Optim. 6(2), 193–205 (1995)

    Article  MathSciNet  Google Scholar 

  13. Fan, H., Hundt, C., Wu, Y.-L., Ernst, J.: Algorithms and implementation for interconnection graph problem. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 201–210. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85097-7_19

    Chapter  MATH  Google Scholar 

  14. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)

    Article  MathSciNet  Google Scholar 

  15. Hosoda, J., Hromkovič, J., Izumi, T., Ono, H., Steinová, M., Wada, K.: On the approximability and hardness of minimum topic connected overlay and its special instances. Theoret. Comput. Sci. 429, 144–154 (2012)

    Article  MathSciNet  Google Scholar 

  16. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing venn diagrams. J. Graph Theory 11(3), 309–325 (1987)

    Article  MathSciNet  Google Scholar 

  17. Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hypergraphs and low-concurrency Euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 265–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_23

    Chapter  Google Scholar 

  18. Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Math. Program. 98(1), 385–414 (2003)

    Article  MathSciNet  Google Scholar 

  19. Onus, M., Richa, A.W.: Minimum maximum degree publish-subscribe overlay network design. In: IEEE INFOCOM 2009, pp. 882–890 (2009)

    Google Scholar 

Download references

Acknowledgment

We would like to thank Muhammad Abid Dar, Andreas Fischer, John Martinovic and Guntram Scheithauer for providing us the source code of their algorithm [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Watrigant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonnet, É., Fălămaş, DE., Watrigant, R. (2019). Constraint Generation Algorithm for the Minimum Connectivity Inference Problem. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34029-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34028-5

  • Online ISBN: 978-3-030-34029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics