Skip to main content

MPPT Methods in Hybrid Renewable Energy Systems

  • Chapter
  • First Online:
Hybrid Renewable Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, the most used MPPT methods in photovoltaic and wind turbine systems are presented. The most used control technique in optimization consists in acting on the duty cycle automatically to place the generator at its optimal value whatever the variations of the metrological conditions or sudden changes in loads which can occur at any time. In general, there are two types of these algorithms: classical and advanced. For each method presented, it is given different details as the concept, the principle, the algorithm, the flowchart, blocks schemes under MATLAB/Simulink and for some methods an application with obtained results in MATLAB/Simulink. A comparison between different MPPT methods is made. At the end of the chapter, an overview of some important proprieties of the most used MPPT methods for Photovoltaic and wind systems has been summarized in different tables. An accent is given on Global Maximum Power Point Tracking (GMPPT) techniques of photovoltaic system under partial shading conditions. Readers are encouraged to use these algorithms to test each example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amer M, Namaane A, M’Sirdi NK (2013) Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction. Energy Procedia 42:318–327. https://doi.org/10.1016/j.egypro.2013.11.032

  2. Rekioua D (2014) Optimisation of wind system conversion. Green energy and technology, pp 77–105. 9781447164241

    Google Scholar 

  3. Rekioua D (2014) Wind energy conversion and power electronics modeling. Green energy and technology, pp 51–57. 9781447164241

    Google Scholar 

  4. Rahrah K, Rekioua D, Rekioua T (2015) Optimization of a photovoltaic pumping system in Bejaia (Algeria) climate. J Electr Eng 15(2):321–326

    Google Scholar 

  5. Achour A, Rekioua D, Mohammedi A, Mokrani Z, Rekioua T, Bacha S (2016) Application of direct torque control to a photovoltaic pumping system with sliding-mode control optimization. Electr Power Compon Syst 44(2):172–184

    Google Scholar 

  6. Mokhtari Y, Rekioua D (2018) High performance of maximum power point tracking using ant colony algorithm in wind turbine. Renew Energy 126:1055–1063

    Article  Google Scholar 

  7. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press

    Google Scholar 

  8. Fathabadi H (2016) Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems. Energy 116:402–416

    Article  Google Scholar 

  9. Kumar MBH, Saravanan B, Sanjeevikumar P, Blaabjerg F (2018) Review on control techniques and methodologies for maximum power extraction from wind energy systems. IET Renew Power Gener 12(14):1609–1622, art. no. Y

    Google Scholar 

  10. Yaakoubi AE, Amhaimar L, Attari K, Harrak MH, Halaoui ME, Asselman A (2019) Non-linear and intelligent maximum power point tracking strategies for small size wind turbines: Performance analysis and comparison. Energy Rep 5:545–554

    Article  Google Scholar 

  11. Karabacak M, Fernandez-Ramirez LM, Kamal T, Kamal S (2019) A new hill climbing maximum power tracking control for wind turbines with inertial effect compensation. IEEE Trans Ind Electron 66(11):8545–8556, 8681269

    Google Scholar 

  12. Mousa HHH, Youssef A-R, Mohamed EEM (2019) Adaptive P&O MPPT algorithm based wind generation system using realistic wind fluctuations. Int J Electr Power Energy Syst 112:294–308

    Article  Google Scholar 

  13. Karabacak M (2019) A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect. Renew Energy 807–827

    Google Scholar 

  14. Kumar D, Chatterjee K (2017) Design and analysis of artificial bee-colony-based MPPT algorithm for DFIG based wind energy conversion systems. Int J Green Energy 14(4):416–429

    Google Scholar 

  15. Tiwari R, Kumar K, Neelakandan RB, Padmanaban S, Wheeler PW (2018) Neural network based maximum power point tracking control with quadratic boost converter for PMSG—wind energy conversion system. Electronics (Switzerland) 7(2), art. no. 20

    Google Scholar 

  16. Rahrah K, Rekioua D, Rekioua T, Bacha S (2015) Photovoltaic pumping system in Bejaia climate with battery storage. Int J Hydrogen Energy 40(39):13665–13675

    Google Scholar 

  17. Kandemir E, Borekci S, Cetin NS (2018) Comparative analysis of reduced-rule compressed fuzzy logic control and incremental conductance MPPT methods. J Electron Mater 47(8):4463–4474

    Google Scholar 

  18. Abdourraziq MA, Abdourraziq S, Maaroufi M (2018) Efficiency optimization of a microcontroller-based PV system employing a single sensor fuzzy logic controller. IET Power Electron 11(3)

    Google Scholar 

  19. Samal S, Barik PK, Sahu SK (2018) Extraction of maximum power from a solar PV system using fuzzy controller based MPPT technique. In: International conference on technologies for smart city energy security and power: smart solutions for smart cities, ICSESP 2018—proceedings, Jan 2018, pp 1–6

    Google Scholar 

  20. Alex LT, Dash SS, Sridhar R (2018) Fuzzy controller-aided input series output series (ISOS) modular converters for photovoltaic applications. Int J Fuzzy Syst 20(8):2566–2576

    Google Scholar 

  21. Bensmail S, Rekioua D, Serir C (2019) Optimization of a photovoltaic pumping system by applying fuzzy control type-1 with adaptive gain. Lect Notes Netw Syst 62:321–328

    Article  Google Scholar 

  22. Chekired F, Larbes C, Rekioua D, Haddad F (2011) Implementation of a MPPT fuzzy controller for photovoltaic systems on FPGA circuit. Energy Procedia 6:541–549

    Article  Google Scholar 

  23. Samadi M, Rakhtala SM (2019) Reducing cost and size in photovoltaic systems using three-level boost converter based on fuzzy logic controller. Iran J Sci Technol Trans Electr Eng 43:313–323

    Article  Google Scholar 

  24. Farajdadian S, Hosseini SMH (2019) Design of an optimal fuzzy controller to obtain maximum power in solar power generation system. Solar Energy 161–178

    Google Scholar 

  25. Yaqin EN, Abdullah AG, Hakim DL, Nandiyanto ABD (2018) MPPT based on fuzzy logic controller for photovoltaic system using PSIM and Simulink. IOP Conf Ser: Mater Sci Eng 288(1), art. no. 012066

    Google Scholar 

  26. Youssef A-R (2015) Maximum power point tracking of a wind power system based on five phase PMSG using optimum torque control. In: 17th international middle-east power system conference (MEPCON’15), Mansoura University, Egypt, 15–17 Dec 2015

    Google Scholar 

  27. Algarin CR, Giraldo JT, Alvarez OR (2017) Fuzzy logic based MPPT controller for a PV system. Energies 10(12), art. no. 2036

    Google Scholar 

  28. Ray P, Sinha AK (2016) Modelling and simulation of grid power management with modified fuzzy logic based MPPT tracking with hybrid power energy system. In: 2015 international conference on energy, power and environment: towards sustainable growth, ICEPE 2015, art. no. 7510168

    Google Scholar 

  29. Lopez-Santos O, Garcia G, Martinez-Salamero L, Giral R, Vidal-Idiarte E, Merchan-Riveros MC, Moreno-Guzman Y (2019) Analysis, design, and implementation of a static conductance-based MPPT method. IEEE Trans Power Electron 34(2):1960–1979, art. no. 8359380

    Google Scholar 

  30. Nirudh J, Somchat J (2019) Estimation of solar potential for thailand using adaptive neurofuzzy inference system models. J Sol Energy Eng Trans ASME 141(6):061009

    Article  Google Scholar 

  31. Amara K, Fekik A, Hocine D, Bakir ML, Bourennane E-B, Malek TA, Malek A (2018) Improved performance of a PV solar panel with adaptive neuro fuzzy inference system ANFIS based MPPT. In: 7th international IEEE conference on renewable energy research and applications, ICRERA 2018, pp 1098–1101, art. no. 8566818

    Google Scholar 

  32. Pilakkat D, Kanthalakshmi S (2018) Drift free variable step size perturb and observe MPPT algorithm for photovoltaic systems under rapidly increasing insolation. Electronics 22(1):19–26

    Google Scholar 

  33. Pilakkat D, Kanthalakshmi S (2019) An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Sol Energy 37–47

    Google Scholar 

  34. Salman S, Ai X, Wu Z (2018) Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200 W PV system. Prot Control Mod Power Syst 3(1), art. no. 25

    Google Scholar 

  35. Jiang LL, Srivatsan R, Maskell DL (2018) Computational intelligence techniques for maximum power point tracking in PV systems: a review. Renew Sustain Energy Rev 85:14–45

    Article  Google Scholar 

  36. Mohammedi A, Mezzai N, Rekioua D, Rekioua T (2014) Impact of shadow on the performances of a domestic photovoltaic pumping system incorporating an MPPT control: a case study in Bejaia, North Algeria. Energy Convers Manag 84:20–29

    Article  Google Scholar 

  37. Farh HMH, Othman MF, Eltamaly AM (2018) Maximum power extraction from grid-connected PV system. In: 2017 Saudi Arabia smart grid conference, SASG 2017, pp 1–6

    Google Scholar 

  38. Eltamaly AM (2018) Performance of MPPT Techniques of Photovoltaic Systems Under Normal and Partial Shading Conditions. Adv Renew Energ Power Technol 1:115–161

    Article  Google Scholar 

  39. Eltamaly AM, Farh HMH, Al Saud MS (2019) Impact of PSO reinitialization on the accuracy of dynamic global maximum power detection of variant partially shaded PV systems. Sustainability (Switzerland) 11(7), art. no. 2091

    Google Scholar 

  40. Smida MB, Sakly A, Vaidyanathan S, Azar AT (2018) Control-based maximum power point tracking for a grid-connected hybrid renewable energy system optimized by particle swarm optimization. Adv Syst Dyn Control 58–89

    Google Scholar 

  41. Priyadarshi N, Ramachandaramurthy VK, Padmanaban S, Azam F (2019) An ant colony optimized MPPT for standalone hybrid PV-wind power system with single Cuk converter. Energies 12(1), art. no. en12010167

    Google Scholar 

  42. Algarin CR, Alvarez OR, Castro AO (2018) Data from a photovoltaic system using fuzzy logic and the P&O algorithm under sudden changes in solar irradiance and operating temperature. Data Brief 21:1618–1621

    Article  Google Scholar 

  43. Bataineh K, Eid N (2018) A hybrid maximum power point tracking method for photovoltaic systems for dynamic weather conditions. Resources 7(4):68

    Article  Google Scholar 

  44. Soufi Y, Bechouat M, Kahla S (2017) Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system. Int J Hydrogen Energy 42(13):8680–8688

    Google Scholar 

  45. Merchaoui M, Sakly A, Mimouni MF (2018) Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers Manag 175:151–163

    Article  Google Scholar 

  46. Batarseh MG, Za’ter ME (2018) Hybrid maximum power point tracking techniques: a comparative survey, suggested classification and uninvestigated combinations. Sol Energy 169:535–555

    Article  Google Scholar 

  47. Ahmad R, Murtaza AF, Sher HA (2019) Power tracking techniques for efficient operation of photovoltaic array in solar applications – a review. Renew Sustain Energy Rev 82–102

    Google Scholar 

  48. Rekioua D, Matagne E (2012) Optimization of photovoltaic power systems: modelization, simulation and control. Green energy and technology, vol 102

    Google Scholar 

  49. Boutabba T, Alibi A, Chrifi-Alaoui L, Ouriagli M, Drid, S, Mehdi D, Benbouzid MEH (2018) DSPACE real-time implementation sliding mode maximum power point tracker for photovoltaic system. In: 2018 7th international conference on systems and control, ICSC 2018, pp 137–141, 8587827

    Google Scholar 

  50. Yin L, Yu S, Zhang X, Tang Y (2017) Simple adaptive incremental conductance MPPT algorithm using improved control model. J Renew Sustain Energy 9:065501

    Article  Google Scholar 

  51. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, vol IV, pp 1942–1948

    Google Scholar 

  52. Kamejima T, Phimmasone V, Kondo Y, Miyatake M (2011) The optimization of control parameters of PSO based MPPT for photovoltaics. In: IEEE PEDS 2011, Singapore, 5–8 Dec 2011

    Google Scholar 

  53. Suryavanshi R, Joshi DR, Jangamshetti SH (2012) PSO and P&O based MPPT technique SPV panel under varying atmospheric conditions. Int J Eng Technol (IJEIT) 1(3)

    Google Scholar 

  54. Kazmi SMR, Goto H, Guo H-J, Ichinokura O (2010) Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system. In: 2010 IEEE energy conversion congress and exposition, Atlanta, GA, USA, 12–16 Sept 2010, pp 4076–4082

    Google Scholar 

  55. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Conference: proceedings of ECAL91—European conference on artificial life, Jan 1991

    Google Scholar 

  56. Rajkumar RK, Ramachandaramurthy VK, Yong BL, Chia DB (2011) Techno-economical optimization of hybrid PV/wind/battery system using neuro-fuzzy. Energy 36(8):5148–5153. https://doi.org/10.1016/j.energy.2011.06.017

  57. Tadjine K, Aissou S, Mebarki NE, Rekioua D, Logerais P-O (2018) Development of a LabVIEW interface to maximize the photovoltaic power under different outdoor conditions. In: Proceedings of 2017 international renewable and sustainable energy conference, IRSEC 2017, 8477251

    Google Scholar 

  58. Serir C, Rekioua D (2017) Contrôle vectoriel-logique floue pour le pompage photovoltaïque (Vector control of a motor pump system powers by a photovoltaic generator optimized by fuzzy logic control). Revue Roumaine des Sciences Techniques Serie Electrotechnique et Energetique 62(4):375–380

    Google Scholar 

  59. Abdullah MA, Yatim AHM, Tan CW, Saidur R (2012) A review of maximum power point tracking algorithms for wind energy systems. Renew Sustain Energy Rev 16(5):3220–3227. https://doi.org/10.1016/j.rser.2012.02.016

  60. Eroglu M, Dursun E, Sevencan S, Song J, Yazici S, Kilic O (2011) A mobile renewable house using PV/wind/fuel cell hybrid power system. Int J Hydrogen Energy 36(13):7985–7992

    Article  Google Scholar 

  61. Karakoulidis K, Mavridis K, Bandekas DV, Adoniadis P, Potolias C, Vordos N (2011) Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel-battery-fuel cell power system. Renew Energy 36(8):2238–2244. https://doi.org/10.1016/j.renene.2010.12.003

  62. Hosseinian H, Damghani H (2019) Ideal planning of a hybrid wind-PV-diesel microgrid framework with considerations for battery energy storage and uncertainty of renewable energy resources. In: 2019 IEEE 5th conference on knowledge based engineering and innovation, KBEI 2019, pp 911–916, art. no. 8734947

    Google Scholar 

  63. Qandil MD, Abbas AI, Qandil HD, Al-Haddad MR, Amano RS (2019) A stand-alone hybrid photovoltaic, fuel cell, and battery system: case studies in Jordan

    Google Scholar 

  64. Rekioua D (2014) Hybrid wind systems. Green energy and technology, pp 163–183. 9781447164241

    Google Scholar 

  65. Lu X, Qu Y, Wang Y, Qin C, Liu G (2018) A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies. Energy Convers Manag 171:1273–1291

    Google Scholar 

  66. Assaf J, Shabani B (2018) Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: towards 100% renewable heat and power supply to standalone applications. Energy 157:862–876

    Google Scholar 

  67. Jamshidi M, Askarzadeh A (2019) Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system. Sustain Cities Soc 44:310–320

    Google Scholar 

  68. Elhadidy MA, Shaahid SM (1998) Feasibility of hybrid (wind + solar) power systems for Dhahran Saudi Arabia. In: World renewable energy congress, Florence, Italy, 20–25 Sept 1998, vol 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamila Rekioua .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rekioua, D. (2020). MPPT Methods in Hybrid Renewable Energy Systems. In: Hybrid Renewable Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-34021-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34021-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34020-9

  • Online ISBN: 978-3-030-34021-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics