Skip to main content

Deep Learning for Clinical Decision Support Systems: A Review from the Panorama of Smart Healthcare

  • Chapter
  • First Online:
Deep Learning Techniques for Biomedical and Health Informatics

Part of the book series: Studies in Big Data ((SBD,volume 68))

Abstract

Innovations in Deep learning (DL) are tremendous in the recent years and applications of DL techniques are ever expanding and encompassing a wide range of services across many fields. This is possible primarily due to two reasons viz. availability of massive amounts of data for analytics, and advancements in hardware in terms of storage and computational power. Healthcare is one such field that is undergoing a major upliftment due to pervasion of DL in a large scale. A wide variety of DL algorithms are being used and being further developed to solve different problems in the healthcare ecosystem. Clinical healthcare is one of the foremost areas in which learning algorithms have been tried to aid decision making. In this direction, combining DL with the existing areas like image processing, natural language processing, virtual reality, etc., has further paved way in automating and improving the quality of clinical healthcare enormously. Such kind of intelligent decision making in healthcare and clinical practice is also expected to result in holistic treatment. In this chapter, we review and accumulate various existing DL techniques and their applications for decision support in clinical systems. There are majorly three application streams of DL namely image analysis, natural language processing, and wearable technology that are discussed in detail. Towards the end of the chapter, a section on directions for future research like handling class imbalance in diagnostic data, DL for prognosis leading to preventive care, data privacy and security would be included. The chapter would be a treat for budding researchers and engineers who are aspiring for a career in DL applied healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019)

    Article  Google Scholar 

  2. Safran, C., Bloomrosen, M., Hammond, W.E., Labkoff, S., Markel-Fox, S., Tang, P.C., Detmer, D.E.: Toward a national framework for the secondary use of health data: an American medical informatics association white paper. J. Am. Med. Inf. Assoc. 14(1), 1–9 (2007). https://doi.org/10.1197/jamia.m2273. ISSN 1067-5027. PMC 2329823. PMID 17077452

    Article  Google Scholar 

  3. Atta-ur-Rahman, M.I.B.A: Virtual clinic: a CDSS assisted telemedicine framework. In: Telemedicine Technologies, chap. 15, 1st edn. Elsevier (2019)

    Google Scholar 

  4. Atta-ur-Rahman, S.M.H., Jamil, S.: Virtual clinic: a telemedicine proposal for remote areas of Pakistan. In: 3rd World Congress on Information and Communication Technologies (WICT’13), pp. 46–50, 15–18 Dec, Vietnam (2013)

    Google Scholar 

  5. Wang, J.X., Sullivan, D.K., Wells, A.J., Wells, A.C., Chen, J.H.: Neural networks for clinical order decision support. AMIA Jt. Summits Trans. Sci. Proc. 2019, 315–324 (2019)

    Google Scholar 

  6. Yang, Z., Huang, Y., Jiang, Y., Sun, Y., Zhang, Y.-J., Luo, P.: Clinical assistant diagnosis for electronic medical record based on convolutional neural network. Sci. Rep. 8(6329) (2018)

    Google Scholar 

  7. Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9. Springer Publications

    Article  Google Scholar 

  8. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  9. Avendi, M., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  10. Szegedy, C., Toshev, A., Erhan, D.: Deep Neural Networks for Object Detection. NIPS (2013)

    Google Scholar 

  11. Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, J., Ourselin, S., Vercauteren, T.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)

    Article  Google Scholar 

  12. Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Medical image segmentation based on multimodal convolutional neural network: study on image fusion schemes. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 4–7 Apr 2018, Washington, D.C., USA, pp. 903–907

    Google Scholar 

  13. Zhang, J., Xie, Y., Wu, Q., Xia, Y.: Medical image classification using synergic deep learning. Med. Image Anal. 54, 10–19 (2019)

    Article  Google Scholar 

  14. Koitka, S., Demircioglu, A., Kim, M.S., Friedrich, C.M., Nensa, F.: Ossification area localization in pediatric hand radiographs using deep neural networks for object detection. PLoS One 13(11), e0207496 (2018). https://doi.org/10.1371/journal.pone.0207496

    Article  Google Scholar 

  15. Deniz, C.M., Xiang, S., Hallyburton, R.S., Welbeck, A., Babb, J.S., Honig, S., Cho, K., Chang, G.: Segmentation of the proximal femur from MR images using deep convolutional neural networks. Sci. Rep. 8(16485) (2018)

    Google Scholar 

  16. Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A.: Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP J. Image Video Process. 2018, 97 (2018)

    Google Scholar 

  17. Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, S., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  18. Chakravarty, A., Sivaswamy, J.: RACE-net: a recurrent neural network for biomedical image segmentation. IEEE J. Biomed. Health Inf.

    Google Scholar 

  19. Wang, S., He, K., Nie, D., Zhou, S., Gao, Y., Shen, D.: CT Male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation. Med. Image Anal. (2019)

    Google Scholar 

  20. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks Data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  21. Gao, Y., Phillips, J.M., Zheng, Y., Min, R., Fletcher, P.T., Gerig, G.: Fully convolutional structured LSTM networks for joint 4D medical image segmentation. In: IEEE 15th international symposium on biomedical imaging (ISBI 2018), Washington, DC, 2018, pp. 1104–1108. https://doi.org/10.1109/isbi.2018.8363764

  22. http://brainweb.bic.mni.mcgill.ca/brainweb/

  23. http://braintumorsegmentation.org/

  24. https://nihcc.app.box.com/v/ChestXray-NIHCC

  25. https://www.cancerimagingarchive.net/

  26. http://www.oasis-brains.org/#data

  27. http://adni.loni.usc.edu/

  28. https://fitbir.nih.gov/

  29. http://cecas.clemson.edu/~ahoover/stare/

  30. http://lbam.med.jhmi.edu/

  31. https://www.insight-journal.org/midas/

  32. http://archive.ics.uci.edu/ml/index.php

  33. http://www.via.cornell.edu/databases/

  34. http://www.eng.usf.edu/cvprg/

  35. https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

  36. http://www.isi.uu.nl/Research/Databases/SCR/

  37. http://www.via.cornell.edu/crpf.html

  38. http://peipa.essex.ac.uk/info/mias.html

  39. http://www2.it.lut.fi/project/imageret/diaretdb1/

  40. https://oai.epi-ucsf.org/datarelease/

  41. IBM Watson Clinical Decision support system. https://www.ibm.com/watson-health/solutions/clinical-decision-support

  42. Meystre, S., Haug, P.J.: Natural language processing to extract medical problems from electronic clinical documents: performance evaluation. J. Biomed. Inf. 39(6), 589–599 (2006). ISSN 1532-0464

    Article  Google Scholar 

  43. Anderson, H.D., Pace, W.D., Brandt, E., Nielsen, R.D., Allen, R.R., Libby, A.M., West, D.R., Valuck, R.J.: Monitoring suicidal patients in primary care using electronic health records. J. Am. Board Fam. Med. 28(1), 65–71 (2015). https://doi.org/10.3122/jabfm.2015.01.140181

    Article  Google Scholar 

  44. Fiszman, M., Chapman, W.W., Aronsky, D., Evans, R.S., Haug, P.J.: Automatic detection of acute bacterial pneumonia from chest X Ray reports. J. Am. Med. Inform. Assoc. 7(6), 593–604 (2000)

    Article  Google Scholar 

  45. https://mimic.physionet.org/

  46. https://www.i2b2.org/NLP/DataSets/Main.php

  47. https://healthdata.gov/search/type/dataset

  48. https://bchi.bigcitieshealth.org/indicators/1827/searches/34444

  49. https://www.mortality.org/

  50. https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset

  51. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html

  52. https://dbarchive.biosciencedbc.jp/index-e.html

  53. https://hcup-us.ahrq.gov/databases.jsp

  54. https://seer.cancer.gov/faststats/index.html

  55. https://gengo.ai/datasets/18-free-life-sciences-medical-datasets-for-machine-learning/?utm_campaign=c&utm_medium=quora&utm_source=rei

  56. Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Inf. 22(5), 1589–1604 (2018). https://doi.org/10.1109/JBHI.2017.2767063

    Article  Google Scholar 

  57. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of deep belief networks for natural language understanding. IEEE/ACM Trans. Audio, Speech, Lang. Process. 22(4), 778–784 (2014). https://doi.org/10.1109/TASLP.2014.2303296

    Article  Google Scholar 

  58. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  59. Jin, Y., Zhang, H., Du, D.: Improving deep belief networks via delta rule for sentiment classification. In: IEEE 28th international conference on tools with artificial intelligence (ICTAI), San Jose, CA, pp. 410–414 (2016). https://doi.org/10.1109/ictai.2016.0069

  60. Jiang, X., Zhang, H., Duan, F., Quan, X.: Identify Huntington’s disease associated genes based on restricted Boltzmann machine with RNA-seq data. BMC Bioinf. 18(1), 447 (2017). https://doi.org/10.1186/s12859-017-1859-6

  61. Tomczak, J.M.: Learning informative features from restricted Boltzmann machines. Neural Process. Lett. 44(3), 735–750 (2016). https://doi.org/10.1007/s11063-015-9491-9. Springer Publications

    Article  Google Scholar 

  62. https://www.apple.com/in/watch/

  63. Dargazany, A.R., Stegagno, P., Mankodiya, K.: Wearable DL: wearable internet-of-things and deep learning for big data analytics—concept, literature, and future. Mob. Inf. Syst. (8125126), 20 (2018). https://doi.org/10.1155/2018/8125126

    Article  Google Scholar 

  64. Xu, M., Qian, F., Zhu, M., Huang, F., Pushp, S., Liu, X.: DeepWear: adaptive local offloading for on-wearable deep learning. IEEE Nat. Future Mob. Inf. Syst. Article ID 8125126, 20 (2018). https://doi.org/10.1155/2018/8125126TransactionsonMobileComputing, https://doi.org/10.1109/tmc.2019.2893250

  65. Ravi, D., Wong, C., Lo, B., Yang, G.: Deep learning for human activity recognition: a resource efficient implementation on low-power devices. In: IEEE 13th international conference on wearable and implantable body sensor networks (BSN), San Francisco, CA, pp. 71–76 (2016). https://doi.org/10.1109/bsn.2016.7516235

  66. Yin, H., Jha, N.K.: A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles. IEEE Trans. Multi-Scale Comput. Syst. 3(4), 228–241 (2017). https://doi.org/10.1109/tmscs.2017.2710194

    Article  Google Scholar 

  67. Abdullah, S., Choudhury, T.: Sensing technologies for monitoring serious mental illnesses. IEEE Multimedia 25(1), 61–75 (2018). https://doi.org/10.1109/mmul.2018.011921236

    Article  Google Scholar 

  68. Al-khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., Waraich, A.: Remote health monitoring of elderly through wearable sensors. Multimed. Tools Appl. 78(17), 24681–24706 (2019). https://doi.org/10.1007/s11042-018-7134-7. Springer Publications

    Article  Google Scholar 

  69. Jiang, F., Jiang, Y., Zhi, H., et al.: Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2 (2017). https://doi.org/10.1136/svn-2017-000101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sandeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandeep Kumar, E., Satya Jayadev, P. (2020). Deep Learning for Clinical Decision Support Systems: A Review from the Panorama of Smart Healthcare. In: Dash, S., Acharya, B., Mittal, M., Abraham, A., Kelemen, A. (eds) Deep Learning Techniques for Biomedical and Health Informatics. Studies in Big Data, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-33966-1_5

Download citation

Publish with us

Policies and ethics