Skip to main content

Automated Brain Tumor Segmentation in MRI Images Using Deep Learning: Overview, Challenges and Future

  • Chapter
  • First Online:

Part of the book series: Studies in Big Data ((SBD,volume 68))

Abstract

Brain tumor segmentation of MRI images is a crucial task in the medical image processing. It is very important that a brain tumor can be diagnosed in initial stages which eventually improve treatment as well as survival chances of patient. Manual segmentation is highly dependent on doctor, it may vary from one expert to another as well as it is very time-consuming. On the other side, automated segmentation helps a doctor in quick decision making, results can be reproduced and records can be maintained electronically which improves diagnosis and treatment planning. There are numerous automated approaches for brain tumor detection which are popular from last few decades namely Neural Networks (NN) and Support Vector Machine (SVM). But, recently Deep Learning has attained a central tract as far as automation of Brain tumor segmentation is concerned because deep architecture is able to represent complex structures, self-learning and efficiently process large amounts of MRI-based image data. Initially the chapter starts with brain tumor introduction and its various types. In the next section, various preprocessing techniques are discussed. Preprocessing is a crucial step for the correctness of an automated system. After preprocessing of image various feature extraction and feature reduction techniques are discussed. In the next section, conventional methods of image segmentation are covered and later on different deep learning algorithms are discussed which are relevant in this domain. Then, in the next section, various challenges are discussed which are being faced in medical image segmentation due to deep learning. In the last section, a comparative study is done between various existing algorithms in terms of accuracy, specificity, and sensitivity on about 200 Brain Images. The motivation of this chapter is to give an overview of deep learning-based segmentation algorithms in terms of existing work, various challenges, along with its future scope. This chapter deals with providing the crux of different algorithms involved in the process of Brain Tumor Classification and comparative analysis has also been done to inspect which algorithm is best.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings of MICCAI workshop on Multimodal Brain Tumor Segmentation Challenge (BRATS), pp. 36–39 (2014)

    Google Scholar 

  2. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  3. Central Brain Tumor Registry of the United States (CBTRUS), Fact Sheet available at (2011) http://www.cbtrus.org/factsheet.html

  4. Christ, J.M., Parvathi, R.M.S.: Brain tumors: an engineering perspective. IJCSI 9(4), 392–396 (2012)

    Google Scholar 

  5. Schmidt, F.E.W.: Development of a time-resolved optical tomography system for neonatal brain imaging. Ph.D. thesis, Chapter-2, pp. 25–34 (1999)

    Google Scholar 

  6. Thurnher, M.M., Thurnher, S.A., Fleischmann, D., Steuer, A., Rieger, A., Helbich, T., Trattnig, S., Schindler, E., Hittmair, K.: Comparison of T2-weighted and fluid-attenuated inversion-recovery. Am. Soc. Neuroradiol. 1601–1609 (1997)

    Google Scholar 

  7. Doolittle, N.D.: State of the science in brain tumor classification. Semin. Oncol. Nurs. 20, 224–230 (2004)

    Article  Google Scholar 

  8. Wen, P.Y., Teoh, S.K., Black, P.M.: Brain tumors: an encyclopedic approach. Cancer Neurol. Clin. Pract. 217–248 (2001)

    Google Scholar 

  9. Chandrasoma, P.C.P.: Stereotactic brain biopsy. W. J. Med. 1–5 (1991)

    Google Scholar 

  10. Kong, N.S.P., Ibrahim, H., Hoo, S.C.: A literature review on histogram equalization and its variations for digital image enhancement. Int. J. Softw. Eng. Res. Pract. 1(2), 386–389 (2013)

    Google Scholar 

  11. Singaravel, S., Suykens, J., Geyer, P.: Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction. Adv. Eng. Inform. 38, 81–90 (2018)

    Article  Google Scholar 

  12. Du, X., Cai, Y., Wang, S., Zhang, L.: Overview of deep learning. In: 31st Youth Academic Annual Conference of Chinese Association of Automation Wuham, China, 11–13 Nov 2016, pp. 159–164

    Google Scholar 

  13. Ishak, N.F., Logeswaran, R., Tan, W.H.: Artifact and noise stripping on low-field brain mri. Int. J. Biol. Biomed. Eng. 2(2), 59–68

    Google Scholar 

  14. Nobi, M.N., Yousuf, M.A.: A new method to remove noise in magnetic resonance and ultrasound images. J. Sci. Res. 3(1), 81–89 (2011)

    Google Scholar 

  15. Devasena, C.L., Hemalatha, M.: Noise removal in magnetic resonance images using hybrid KSL filtering technique. Int. J. Comput. Appl. 27(8), 1–4 (2011)

    Google Scholar 

  16. Kumar, S., Kumar, P., Gupta, M., Nagawat, A.K.: Performance comparison of median and wiener filter in image de-noising. Int. J. Comput. Appl. 12(4), 27–31 (2010)

    Google Scholar 

  17. Bhatia, A., Kulkarni, R.K.: High density salt and pepper noise removal through improved adaptive median filter. Int. Conf. Comput. Sci. Inform. Technol. (CSIT-2012). 197–200 (2012)

    Google Scholar 

  18. Bagade, S.S., Shandilya, V.K.: Use of histogram equalization in image processing for image enhancement. Int. J. Softw. Eng. Res. Pract. 6–10 (2011)

    Google Scholar 

  19. Chen, S.D.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 1, 1–8 (1997)

    Google Scholar 

  20. Wang, C., Zhongfu, Y.: Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Trans. Consum. Electron. 51(4), 1326–1334 (2005)

    Article  Google Scholar 

  21. Ning, C.Y., Liu S.F., Qu, M.: Research on removing noise in medical image based on median filter method. IEEE Explore. 384–388 (2009)

    Google Scholar 

  22. Sawant, H.K., Deore, M.: A comprehensive review of image enhancement techniques. Int. J. Comput. Technol. Electron. Eng. 1(2), 34–38 (2012)

    Google Scholar 

  23. Gonzalez, R.C., Woods, R.E.: Digital image processing, 2nd edn. Prentice Hall (2002)

    Google Scholar 

  24. Chen, S.D., Ramli, R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Xplore, 1301–1309 (2001)

    Google Scholar 

  25. Dykstra, C., Das, M.: The use of image morphing to improve the detection of tumors in emission imaging. Nucl. Sci. Symp. 3, 1781–1785 (1998)

    Google Scholar 

  26. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. B. 187–217 (1980)

    Google Scholar 

  27. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  28. Schunck, B.G.: Edge detection with Gaussian filters at multiple scales. IEEE Comput. Soc. Work. Comp. Vis.208–210 (1987)

    Google Scholar 

  29. Bergholm, F.: Edge focusing. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-09, 726–741 (1987)

    Article  Google Scholar 

  30. Lacroix, V.: The primary raster: A Multiresolution Image Description. In: 10th International Conference on Pattern Recognition, pp. 903–907 (1990)

    Google Scholar 

  31. Williams, D.J., Shah, M.: Edge contours using multiple scales. Comput. Vis. Graph Image Process. 51, 256–274 (1990)

    Article  Google Scholar 

  32. Goshtasby, A., Marr, D.: On edge focusing. Image visualization. Computer. 12, 247–256

    Article  Google Scholar 

  33. Deng, G., Cahill, L.W.: An adaptive Gaussian filter for noise reduction and edge detection. In: Proceedings IEEE Nuclear Science Symposium, pp. 1615–1619 (1994)

    Google Scholar 

  34. Bennamoun, M., Boashash, B., Koo, J.: Optimal parameters for edge detection. Proc. IEEE Int. Conf. SMC. 2, 1482–1488 (1995)

    Google Scholar 

  35. Heric, D., Zazula, D.: Combined edge detection using wavelet transform and signal registration. Elsevier J. Image Vis. Comput. 25, 652–662 (2007)

    Article  Google Scholar 

  36. Shih, M.Y., Tseng, D.C.: A wavelet based multi resolution edge detection and tracking. Elsevier J. Image Vis. Comput. 23, 441–451 (2005)

    Article  Google Scholar 

  37. Bezdek, J.C., Chandrasekhar, R., Attikiouzel, Y.: A geometric approach to edge detection. IEEE Trans. Fuzzy Syst. 6(1), 52–75 (1998)

    Article  Google Scholar 

  38. Wu, J., Yin, Z., Xiong, Y.: The fast multilevel fuzzy edge detection of blurry images. IEEE Signal Process. Lett. 14(5), 344–347 (2007)

    Article  Google Scholar 

  39. Lu, S., Wang, Z., Shen, J.: Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement. Elsevier J. Pattern Recogn. 36, 2395–2409 (2003)

    Article  MATH  Google Scholar 

  40. Shrivakshan, G.T., Chandrasekar, C., Bhandarkar, S.M.: An edge detection technique using genetic algorithm-based optimization‖. Pattern Recogn. 27(9), 1159–1180 (1994)

    Article  Google Scholar 

  41. Zhang, Y., Potter, W.D.: Comparison of various edge detection techniques used in image processing. IJCSI Int. J. Comput. Sci. Issues 9(5), 269–276 (2012)

    Google Scholar 

  42. Becerikli, Y., Karan, T.M., Cabestany, J., Prieto, A., Sandoval, D.F.: A new fuzzy approach for edge detection. IWANN 2005, 943–951 (2005)

    Google Scholar 

  43. Anver, M.M., Stonie, R.J.: Evolutionary learning of a fuzzy edge detection algorithm based on multiple masks. Springer, vol. 12, pp. 1–13 (2005)

    Google Scholar 

  44. Suliman, C., Boldişor, C., Băzăvan, R., Moldoveanu, F.: A fuzzy logic based method for edge detection. Eng. Sci. 4, 159–164 (2011)

    Google Scholar 

  45. Sharifi, M., Fathy, M., Mahmoudi, M.T.: A classified and comparative study of edge detection algorithms. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC.02) IEEE, pp 1–4 (2002)

    Google Scholar 

  46. Yu-Qian, Z., Wei-Hua, G., Zhen-Cheng, C., Jing-Tian, T., Ling-Yun, L.: Medical images edge detection based on mathematical morphology. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, pp. 6492–6495 (2005)

    Google Scholar 

  47. Saxena, S., Kumar, S., Sharma, V.K.: Comparative analysis of various edge detection techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6), 758–761 (2013)

    Google Scholar 

  48. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 610–621 (1973)

    Article  Google Scholar 

  49. Prasetiyo, Khalid, M., Yusof, R., Meriaudean, F.: A comparative study of feature extraction methods for wood texture classification. SITIS, IEEE Conf.. 23–29 (2010)

    Google Scholar 

  50. Nithya, R., Santhi, B.: Comparative study on feature extraction method for breast cancer classification. J. Theor. Appl. Inf. Technol. 33(2), 220–226 (2011)

    Google Scholar 

  51. Chadha, A., Mallik, S., Johar, R.: Comparative study and optimization of feature-extraction techniques for content based image retrieval. Int. J. Comput. Appl. 52(20), 35–42 (2012)

    Google Scholar 

  52. Ramamurthy, B., Chandran, K.R., Aishwarya, S., Janaranjani, P.: CBMIR: content based image retrieval using invariant moments, GLCM and grayscale resolution for medical images. Eur. J. Sci. Res. 460–471 (2010)

    Google Scholar 

  53. Hamza, R.M., Al-Assadi, T.A.: Genetic algorithm to find optimal GLCM features. Inf. Technol. Univ. Babylon Iraq. pp. 1–16 (2012)

    Google Scholar 

  54. Jolliffe, I.T., Potter, W.D.: Principal Component Analysis, 2nd edn, pp. 1–5. Springer, New York (2002)

    Google Scholar 

  55. Scholkopf, B., Smola, A., Muller, K.R.: Kernel Principal Component Analysis, pp. 327–352. IT Press, Cambridge, MA (1999)

    Google Scholar 

  56. Shapiro, V.A., Veleva, P.K., Sgurev, V.S.: An adaptive method for image thresholding. In: 11th IAPR International Conference on Image, Speech and Signal Analysis, pp. 696–699 (1992)

    Google Scholar 

  57. Sezgin, Mehmet, Sankur, Bulent: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004)

    Article  Google Scholar 

  58. Elaiza, N., Khalid, A., Ibrahim, S., Manaf, M.: Comparative study of adaptive network-based fuzzy inference system (ANFIS), k-nearest neighbors (k-NN) and fuzzy c-means (FCM) for brain abnormalities segmentation. Int. J. Comput. 5(4), 513–524 (2011)

    Google Scholar 

  59. Zhang, J., Morgan, N.: Stochastic model based image segmentation using Markov random fields and multi-layerperceptrons. IEEE Signal Process. 1–8 (1990)

    Google Scholar 

  60. Azmi, R., Norozi, N.: A new markov random field segmentation method for breast lesion segmentation in MR images. J. Med. Signals Sens. 1(3), 156–164 (2011)

    Article  Google Scholar 

  61. Prastawa, M., Bullitt, E., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 18, 217–231 (2004)

    Google Scholar 

  62. Dipali, B.B., Patil, S.N.: Brain tumor mri image segmentation using FCM and SVM techniques. Int. J. Eng. Sci. Comput. 3939–3942 (2016)

    Google Scholar 

  63. Kannan, S.R., Ramathilagam, S., Devia, R., Hines, E.: Strong fuzzy C-means in medical image data analysis. J. Syst. Softw. 2425–2438 (2012)

    Article  Google Scholar 

  64. Zhang, J.G., Ma, K.K., Chong, V.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. IWAIT. 207–21 (2004)

    Google Scholar 

  65. Garcia, C., Moreno, J.: Kernel based method for segmentation and modeling of magnetic resonance images. LNCS. 636–645 (2004)

    Google Scholar 

  66. Lee, C.H., Schmidt, M., Murtha, A., Bistritz, A., Sander, J., Greiner, R.: Segmenting brain tumors with conditional random fields and support vector machines. LNCS 3765, 469–478 (2005)

    Google Scholar 

  67. Gibbs, P., Buckley, D.L., Blackband, S.J., Horsman, A.: Tumor volume determination from MR images by morphological segmentation. Phys. Med. Biol. 2437–2446 (1996)

    Article  Google Scholar 

  68. Letteboer, M., Olsen, O., Dam, E., Willems, P., Viergever, M., Niessen, W.: Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. Acad. Radiol. 11, 1125–1138 (2011)

    Article  Google Scholar 

  69. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35(2017), 18–31 (2017)

    Article  Google Scholar 

  70. Web Source: https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html

  71. Magudeeswaran, V., Ravichandran, C.G.: Fuzzy logic-based histogram equalization for image contrast enhancement. Math. Eng. 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Vorontsov, A.O., Averkin, A.N.: Comparison of different convolution neural network architectures for the solution of the problem of emotion recognition by facial expression. In: Proceedings of the VIII International Conference “Distributed Computing and Grid-technologies in Science and Education” (GRID 2018), Dubna, Moscow region, Russia, Sep 10–14 2018, pp. 35–40

    Google Scholar 

  73. Agarwal, V.: Analysis of histogram equalization in image preprocessing. BIOINFO Hum. Comput. Interact. 1(1), 04–07

    Google Scholar 

  74. Yang, Y., Huang, S.: Novel statistical approach for segmentation of brain magnetic resonance imaging using an improved expectation maximization algorithm. Optica Appl. 125–36 (2006)

    Google Scholar 

  75. Vinitski, S., Iwanaga, T., Gonzalez, C.F., Andrews, D., Knobler, R., Curtis, M.: Fast tissue segmentation based on a 4D feature map. In: 9th International Conference (ICIAP 97), vol. 2, pp. 445–452 (1997)

    Google Scholar 

  76. Revathy, M., Hemalataha, M.: Efficient method for feature extraction on video processing. In: CCSEIT 2012 ACM International Conference, pp. 539–543 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M., Miglani, N. (2020). Automated Brain Tumor Segmentation in MRI Images Using Deep Learning: Overview, Challenges and Future. In: Dash, S., Acharya, B., Mittal, M., Abraham, A., Kelemen, A. (eds) Deep Learning Techniques for Biomedical and Health Informatics. Studies in Big Data, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-33966-1_16

Download citation

Publish with us

Policies and ethics