Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 495 Accesses

Abstract

The rise of nanotechnology, a new industrial revolution, is generating a wealth of novel advanced materials that are dramatically changing the fields of electronics, engineering, and medicine. It is anticipated that these changes will solve important problems in renewable energy, more efficient communication and transportation systems, bioremediation of environmental pollution, and treatment of debilitating diseases. However, the impact of nanomaterials on the immune system is a concern, since manipulation of matter with a size range on par with subcellular structures has the potential to activate or suppress cells of the innate or adaptive immune system. This chapter overviews the topics covered in this book and thereby sets the stage for understanding the complexity of immune responses to a diversity of emerging engineered nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX. 2014;31(4):441–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asharani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  • Basinas I, Jiménez AS, Galea KS, Tongeren MV, Hurley F. A systematic review of the routes and forms of exposure to engineered nanomaterials. Ann Work Expo Health. 2018;62(6):639–62.

    Article  CAS  PubMed  Google Scholar 

  • Boraschi D, Fadeel B, Duschl A. Immune system. In: Fadeel B, Pietroiusti A, Shvedova A, editors. Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health. 2nd ed: Elsevier/Academic Press (London); 2017. p. 313–37.

    Google Scholar 

  • Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70.

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo AG, Gornati R, Sabbioni E, Chiriva-Internati M, Cobos E, Jenkins MR, Bernardini G. Nanotechnology and human health: risks and benefits. J Appl Toxicol. 2010;30(8):730–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Riviere JE. Biological surface adsorption index of nanomaterials: modelling surface interactions of nanomaterials with biomolecules. Adv Exp Med Biol. 2017;947:207–53.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zheng X, Nicholas J, Humes ST, Loeb JC, Robinson SE, Bisesi JH Jr, Das D, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol J. 2017;14(1):242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 2010;28(12):1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper GS, Miller FW, Germolec DR. Occupational exposures and autoimmune diseases. Int Immunopharmacol. 2002;2(2–3):303–13.

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst P, Camus P. The past and present of pneumoconioses. Curr Opin Pulm Med. 2000;6(2):151–6.

    Article  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol. 2011;6:39–44.

    Article  CAS  PubMed  Google Scholar 

  • Duke KS, Bonner JC. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(3):e1498.

    Article  CAS  PubMed  Google Scholar 

  • Duke KS, Thompson EA, Ihrie MD, Taylor-Just AJ, Ash EA, Shipkowski KA, Hall JR, Tokarz DA, Cesta MF, Hubbs AF, Porter DW, Sargent LM, Bonner JC. Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes. Nanotoxicology. 2018;12(9):975–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatkhutdinova LM, Khaliullin TO, Vasil’yeva OL, Zalyalov RR, Mustafin IG, Kisin ER, Birch ME, Yanamala N, Shvedova AA. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol Appl Pharmacol. 2016;299:125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank EA, Carreira VS, Shanmukhappa K, Medvedovic M, Prows DR, Yadav JS. Genetic susceptibility to toxicologic lung responses among inbred mouse strains following exposure to carbon nanotubes and profiling of underlying gene networks. Toxicol Appl Pharmacol. 2017;327:59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrera C, Fadeel B. It takes two to tango: understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm. 2015;95(Pt A):3–12.

    Article  CAS  PubMed  Google Scholar 

  • Fadeel B, Feliu N, Vogt C, Abdelmonem AM, Parak WJ. Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(2):111–29.

    Article  CAS  PubMed  Google Scholar 

  • Fytianos K, Drasler B, Blank F, von Garnier C, Seydoux E, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B. Current in vitro approaches to assess nanoparticle interactions with lung cells. Nanomedicine (Lond). 2016;11(18):2457–69.

    Article  CAS  Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010;7:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Vanoirbeek JA, Hoet PH. Interactions of nanomaterials with the immune system. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):169–83.

    Article  CAS  PubMed  Google Scholar 

  • Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93.

    Article  CAS  PubMed  Google Scholar 

  • Ihrie MD, Bonner JC. The toxicology of engineered nanomaterials in asthma. Curr Environ Health Rep. 2018;5(1):100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihrie MD, Taylor-Just AJ, Walker NJ, Stout MD, Gupta A, Richey JS, Hayden BK, Baker GL, Sparrow BR, Duke KS, Bonner JC. Inhalation exposure to multi-walled carbon nanotubes alters the pulmonary allergic response of mice to house dust mite allergen. Inhal Toxicol. 2019;31(5):192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM. A carbon nanotube toxicity paradigm driven by mast cells and the IL-33/ST2 axis. Small. 2012;8(18):2904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konduru NV, Molina RM, Swami A, Damiani F, Pyrgiotakis G, Lin P, Andreozzi P, Donaghey TC, Demokritou P, Krol S, Kreyling W, Brain JD. Protein corona: implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol. 2017;14(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreyling WG, Hirn S, Schleh C. Nanoparticles in the lung. Nat Biotechnol. 2010;28(12):1275–6.

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44(9):1689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luster MI. A historical perspective of immunotoxicology. J Immunotoxicol. 2014;11:197–202.

    Article  CAS  PubMed  Google Scholar 

  • Mangum JB, Turpin EA, Antao-Menezes A, Cesta MF, Bermudez E, Bonner JC. Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. Part Fibre Toxicol. 2006;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol. 2009;4(7):451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neagu M, Piperigkou Z, Karamanou K, Engin AB, Docea AO, Constantin C, Negrei C, Nikitovic D, Tsatsakis A. Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol. 2017;91(3):1031–48.

    Article  CAS  PubMed  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.

    Article  CAS  PubMed  Google Scholar 

  • Nel AE, Nasser E, Godwin H, Avery D, Bahadori T, Bergeson L, Beryt E, Bonner JC, Boverhof D, Carter J, Castranova V, Deshazo JR, Hussain SM, Kane AB, Klaessig F, Kuempel E, Lafranconi M, Landsiedel R, Malloy T, Miller MB, Morris J, Moss K, Oberdorster G, Pinkerton K, Pleus RC, Shatkin JA, Thomas R, Tolaymat T, Wang A, Wong J. A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS Nano. 2013;7(8):6422–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberdorster G. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol. 1996;8 Suppl:73–89.

    CAS  PubMed  Google Scholar 

  • Pampaloni F, Florin EL. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol. 2008;26(6):302–10.

    Article  CAS  PubMed  Google Scholar 

  • Polini A, Del Mercato LL, Barra A, Zhang YS, Calabi F, Gigli G. Towards the development of human immune-system-on-a-chip platforms. Drug Discov Today. 2019;24(2):517–25.

    Article  CAS  PubMed  Google Scholar 

  • Sanpui P, Zheng X, Loeb JC, Bisesi JH Jr, Khan IA, Afrooz AR, Liu K, Badireddy AR, Wiesner MR, Ferguson PL, Saleh NB, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells. Part Fibre Toxicol. 2014;11:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, et al. Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagenesis. 2009;50(8):708–17.

    Article  CAS  Google Scholar 

  • Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, Kleeberger SR, Chen LC, Gordon T, Kavanagh TJ. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. FASEB J. 2017;31(10):4600–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-cell interaction: a cell mechanics perspective. Adv Mater. 2018;30(19):e1704463.

    Article  CAS  PubMed  Google Scholar 

  • Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B, et al. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol. 2008;231(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  • Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Møller P, Schins RPF, Vogel U, Kreyling WG, Alstrup Jensen K, Kuhlbusch TAJ, Schwarze PE, Hoet P, Pietroiusti A, De Vizcaya-Ruiz A, Baeza-Squiban A, Teixeira JP, Tran CL, Cassee FR. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect. 2017;125(10):106002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkach AV, Shurin GV, Shurin MR, Kisin ER, Murray AR, Young SH, Star A, Fadeel B, Kagan VE, Shvedova AA. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano. 2011;5:5755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas T, Bahadori T, Savage N, Thomas K. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4):426–33.

    Article  CAS  PubMed  Google Scholar 

  • Thompson EA, Sayers BC, Glista-Baker EE, Shipkowski KA, Taylor AJ, Bonner JC. Innate immune responses to nanoparticle exposure in the lung. J Environ Immunol Toxicol. 2014;1(3):150–6.

    PubMed  PubMed Central  Google Scholar 

  • van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, Palmai-Pallag M, Marbaix E, Lison D. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol. 2016;13(1):38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia T, Li N, Nel AE. Potential health impact of nanoparticles. Annu Rev Public Health. 2009;30:137–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Bonner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonner, J.C., Brown, J.M. (2020). Introduction. In: Bonner, J., Brown, J. (eds) Interaction of Nanomaterials with the Immune System. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-33962-3_1

Download citation

Publish with us

Policies and ethics