Skip to main content

Nonlinear Frequency Conversion

  • Chapter
  • First Online:
Fundamentals of Fiber Lasers and Fiber Amplifiers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 181))

  • 1135 Accesses

Abstract

The chapter describes fundamental aspects of non-linear optics and introduces the reader to a wide range of nonlinear optical phenomena. The description starts with Maxwell’s equations, nonlinear polarization and followed by nonlinear wave equation, and its application to several important high order nonlinear processes. The covered nonlinear processes are described in details at both theoretical and practical levels, including examples of demonstrated fiber lasers with nonlinear frequency conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Kleinman, Nonlinear dielectric polarization in optical media. Phys. Rev. 126, 1977–1979 (1962)

    Article  ADS  Google Scholar 

  2. P. Powers, Fundamentals of Nonlinear Optics (CRC Press, Boca Raton, FL, USA, 2011), pp. 1–311

    Google Scholar 

  3. R.L. Byer, Nonlinear optical phenomena and materials. Annu. Rev. Mater. Sci. 4, 147–190 (1974)

    Article  ADS  Google Scholar 

  4. M.V. Hobden, Phase-matched second-harmonic generation in biaxial crystals. J. Appl. Phys. 38(11), 4365–4372 (1967)

    Article  ADS  Google Scholar 

  5. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118–120 (1961)

    Article  ADS  Google Scholar 

  6. J.A. Giordmaine, Mixing of light beams in crystals. Phys. Rev. Lett. 8, 19–20 (1962)

    Article  ADS  Google Scholar 

  7. R.L. Byer, Y.K. Park, R.S. Feigelson, W.L. Kway, Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3. Appl. Phys. Lett. 39, 17–19 (1981)

    Article  ADS  Google Scholar 

  8. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Ltd., London, 1959), p. 678

    Google Scholar 

  9. F. Kartner, O. Mucke, Nonlinear Optics (University of Hamburg, Hamburg, Germany, 2018), pp. 1–387

    Google Scholar 

  10. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962)

    Article  ADS  Google Scholar 

  11. F. Träger (ed.), Springer Handbook of Lasers and Optics (Springer, Berlin Heidelberg, Germany, 2012), pp. 1–1600

    Google Scholar 

  12. G.D. Boyd, D.A. Kleinman, Parametric interaction of focused Gaussian light beams. J. Appl. Phys. 39, 3597–3639 (1968)

    Article  ADS  Google Scholar 

  13. J.A. Giordmaine, R.C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965)

    Article  ADS  Google Scholar 

  14. T.A. Chernysheva et al., High efficiency, high power solid-state visible lasers for large format-display applications. Proc. SPIE 7197, 719704-1–719704-8 (2009)

    Google Scholar 

  15. F.J. Kontur, I. Dajani, Y. Lu, R.J. Knize, Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT and PPMgLN. Opt. Express 15(20), 12882–12889 (2007)

    Article  ADS  Google Scholar 

  16. D. Hu, E. Eisenberg, P. Madasamy, R. Mead, E. Honea, 70-Watt green laser with near diffraction-limited beam quality. Proc. SPIE 7197, 719705-1–719705-5 (2009)

    Google Scholar 

  17. S.U. Alam et al., Externally modulated, diode seeded Yb3+-doped fiber MOPA pumped high peak power optical parametric oscillator. Proc. SPIE 7197, 71970H-1–71970H-9 (2009)

    Article  Google Scholar 

  18. Y. Gan, X. Gu, J.Y.C. Koo, W. Liang, C.-Q. Xu, Second harmonic generation using an all-Fiber Q-switched Yb-doped fiber laser and MgO:c-PPLN. Adv. OptoElectron 2008, Article ID 956908, 1–6 (2008). https://doi.org/10.1155/2008/956908

    Article  Google Scholar 

  19. C. Kieleck, A. Berrou, B. Donelan, B. Cadier, T. Robin, M. Eichhorn, 6.5 W ZnGeP2 OPO directly pumped by a Q-switched Tm3+-doped single-oscillator fiber laser. Opt. Lett. 40, 1101–1104 (2015)

    Article  ADS  Google Scholar 

  20. J.-B. Lecourt, S. Guillemet, J. Dupuy, A. Gognau, Y. Hernandez, High-power picosecond fiber-based laser operating at 515 nm. Proc. SPIE 10683, 1068338-1–1068338-7 (2018)

    Google Scholar 

  21. Xiaogang Jiang, Feihong Chen, Taoce Yin, E. Forsberg, S. He, Generation of high-power 780 nm femtosecond pulses by an all-polarization-maintaining Er-doped fiber amplification system. Appl. Opt. 58, 4492–4496 (2019)

    Article  ADS  Google Scholar 

  22. Y. Wang, Theory of stimulated Raman scattering. Phys. Rev. 182, 482–494 (1969)

    Article  ADS  Google Scholar 

  23. E. Bélanger, M. Bernier, D. Faucher, D. Côté, R. Vallée, High-power and widely tunable all-fiber Raman laser. J. Lightwave Technol. 26(12), 1696–1701 (2008)

    Article  ADS  Google Scholar 

  24. Y. Glick, Y. Shamir, M. Aviel, Y. Sintov, S. Goldring, N. Shafir, S. Pearl, 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement. Opt. Lett. 43(19), 4755–4758 (2018)

    Article  ADS  Google Scholar 

  25. Lei Zhang, Chi Liu, Huawei Jiang, Yunfeng Qi, Bing He, Jun Zhou, Xijia Gu and Yan Feng, Kilowatt Ytterbium-Raman fiber laser. Opt. Express 22(15), 18483–18489 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ter-Mikirtychev, V.V. (2019). Nonlinear Frequency Conversion. In: Fundamentals of Fiber Lasers and Fiber Amplifiers. Springer Series in Optical Sciences, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-030-33890-9_12

Download citation

Publish with us

Policies and ethics