Skip to main content

Radiographic Diagnosis of Patients with Vertebral Compression Fractures

  • Chapter
  • First Online:
Vertebral Compression Fractures in Osteoporotic and Pathologic Bone

Abstract

This chapter reviews the clinical presentation, diagnostic evaluation, and imaging characterization of vertebral compression fractures (VCF). We review the imaging features that best characterize the age/chronicity of a fracture and how these features correlate with the likelihood of benefit to procedural intervention with vertebroplasty or kyphoplasty. Additionally, we review morphometric and signal intensity patterns on CT and MRI which aid in discrimination between benign osteoporotic fractures and pathologic fractures. Newer techniques for fracture characterization including diffusion-weighted imaging, chemical shift imaging, and dynamic contrast-enhanced imaging are discussed. Finally, we review imaging alternatives for patients with contraindication to MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F FDG PET/CT:

18F-fluorodeoxyglucose positron emission tomography/computed tomography

ADC:

Apparent diffusion coefficient

CSI:

Chemical shift imaging

DCI:

Dynamic contrast-enhanced imaging

DWI:

Diffusion-weighted imaging

MDCT:

Multidetector computed tomography

MRI:

Magnetic resonance imaging

SPECT:

Single-photon emission computed tomography

STIR:

Short tau inversion recovery

Tc 99m-MDP:

Technetium 99m-methyl diphosphonate

Tc-99m HMDP:

Technetium 99m hydroxymethylene diphosphonate

VCF:

Vertebral compression fracture

References

  1. Patel ND BD, Burns J, et al. ACR appropriateness criteria: low back pain. Available at https://acsearch.acr.org/docs/69483/Narrative/. American College of Radiology; [8/6/2017].

  2. Daffner RH WB, Wippold FJ, et al. ACR appropriateness criteria: suspected spine trauma. Available at https://acsearch.acr.org/docs/69359/Narrative/. American College of Radiology; [8/6/2017].

  3. Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol. 2005;26(8):2057–66.

    PubMed  PubMed Central  Google Scholar 

  4. Hoffman JR, Mower WR, Wolfson AB, Todd KH, Zucker MI. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med. 2000;343(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  5. Stiell IG, Wells GA, Vandemheen KL, Clement CM, Lesiuk H, De Maio VJ, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA. 2001;286(15):1841–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hanson JA, Blackmore CC, Mann FA, Wilson AJ. Cervical spine injury: a clinical decision rule to identify high-risk patients for helical CT screening. AJR Am J Roentgenol. 2000;174(3):713–7.

    Article  CAS  PubMed  Google Scholar 

  7. Old JL, Calvert M. Vertebral compression fractures in the elderly. Am Fam Physician. 2004;69(1):111–6.

    PubMed  Google Scholar 

  8. Patel U, Skingle S, Campbell GA, Crisp AJ, Boyle IT. Clinical profile of acute vertebral compression fractures in osteoporosis. Br J Rheumatol. 1991;30(6):418–21.

    Article  CAS  PubMed  Google Scholar 

  9. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48.

    Article  CAS  PubMed  Google Scholar 

  10. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev. 1985;7:178–208.

    Article  CAS  PubMed  Google Scholar 

  11. Alexandru D, So W. Evaluation and management of vertebral compression fractures. Perm J. 2012 Fall;16(4):46–51.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, Silman AJ, et al. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int. 1999;9(3):206–13.

    Article  CAS  PubMed  Google Scholar 

  13. Buckley JM, Kuo CC, Cheng LC, Loo K, Motherway J, Slyfield C, et al. Relative strength of thoracic vertebrae in axial compression versus flexion. Spine J. 2009;9(6):478–85.

    Article  PubMed  Google Scholar 

  14. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128(10):793–800.

    Article  CAS  PubMed  Google Scholar 

  15. Hurxthal LM. Measurement of anterior vertebral compressions and biconcave vertebrae. Am J Roentgenol Radium Therapy, Nucl Med. 1968;103(3):635–44.

    Article  CAS  Google Scholar 

  16. Lunt M, Ismail AA, Felsenberg D, Cooper C, Kanis JA, Reeve J, et al. Defining incident vertebral deformities in population studies: a comparison of morphometric criteria. Osteoporos Int. 2002;13(10):809–15.

    Article  CAS  PubMed  Google Scholar 

  17. Gaitanis IN, Hadjipavlou AG, Katonis PG, Tzermiadianos MN, Pasku DS, Patwardhan AG. Balloon kyphoplasty for the treatment of pathological vertebral compressive fractures. Eur Spine J. 2005;14(3):250–60.

    Article  PubMed  Google Scholar 

  18. Maynard AS, Jensen ME, Schweickert PA, Marx WF, Short JG, Kallmes DF. Value of bone scan imaging in predicting pain relief from percutaneous vertebroplasty in osteoporotic vertebral fractures. AJNR Am J Neuroradiol. 2000;21(10):1807–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Park SY, Lee SH, Suh SW, Park JH, Kim TG. Usefulness of MRI in determining the appropriate level of cement augmentation for acute osteoporotic vertebral compression fractures. J Spinal Disord Tech. 2013;26(3):E80–5.

    Article  PubMed  Google Scholar 

  20. Lin HH, Chou PH, Wang ST, Yu JK, Chang MC, Liu CL. Determination of the painful level in osteoporotic vertebral fractures – retrospective comparison between plain film, bone scan, and magnetic resonance imaging. J Chin Med Assoc. 2015;78(12):714–8.

    Article  PubMed  Google Scholar 

  21. Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol. 2004;183(4):949–58.

    Article  PubMed  Google Scholar 

  22. Laredo JD, Lakhdari K, Bellaiche L, Hamze B, Janklewicz P, Tubiana JM. Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology. 1995;194(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  23. Cuenod CA, Laredo JD, Chevret S, Hamze B, Naouri JF, Chapaux X, et al. Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology. 1996;199(2):541–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lakadamyali H, Tarhan NC, Ergun T, Cakir B, Agildere AM. STIR sequence for depiction of degenerative changes in posterior stabilizing elements in patients with lower back pain. AJR Am J Roentgenol. 2008;191(4):973–9.

    Article  PubMed  Google Scholar 

  25. Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics. 2003;23(1):179–87.

    Article  PubMed  Google Scholar 

  26. Tsujio T, Nakamura H, Terai H, Hoshino M, Namikawa T, Matsumura A, et al. Characteristic radiographic or magnetic resonance images of fresh osteoporotic vertebral fractures predicting potential risk for nonunion: a prospective multicenter study. Spine (Phila Pa 1976). 2011;36(15):1229–35.

    Article  Google Scholar 

  27. Kanchiku T, Imajo Y, Suzuki H, Yoshida Y, Taguchi T. Usefulness of an early MRI-based classification system for predicting vertebral collapse and pseudoarthrosis after osteoporotic vertebral fractures. J Spinal Disord Tech. 2014;27(2):E61–5.

    Article  PubMed  Google Scholar 

  28. Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology. 1989;172(1):215–8.

    Article  CAS  PubMed  Google Scholar 

  29. Collier BD Jr, Fogelman I, Brown ML. Bone scintigraphy: part 2. Orthopedic bone scanning. J Nucl Med. 1993;34(12):2241–6.

    PubMed  Google Scholar 

  30. Matin P. The appearance of bone scans following fractures, including immediate and long-term studies. J Nucl Med. 1979;20(12):1227–31.

    CAS  PubMed  Google Scholar 

  31. Masala S, Schillaci O, Massari F, Danieli R, Ursone A, Fiori R, et al. MRI and bone scan imaging in the preoperative evaluation of painful vertebral fractures treated with vertebroplasty and kyphoplasty. In Vivo. 2005;19(6):1055–60.

    PubMed  Google Scholar 

  32. Brown DB, Gilula LA, Sehgal M, Shimony JS. Treatment of chronic symptomatic vertebral compression fractures with percutaneous vertebroplasty. AJR Am J Roentgenol. 2004;182(2):319–22.

    Article  PubMed  Google Scholar 

  33. Jordan E, Choe D, Miller T, Chamarthy M, Brook A, Freeman LM. Utility of bone scintigraphy to determine the appropriate vertebral augmentation levels. Clin Nucl Med. 2010;35(9):687–91.

    Article  PubMed  Google Scholar 

  34. Benz BK, Gemery JM, McIntyre JJ, Eskey CJ. Value of immediate preprocedure magnetic resonance imaging in patients scheduled to undergo vertebroplasty or kyphoplasty. Spine (Phila Pa 1976). 2009;34(6):609–12.

    Article  Google Scholar 

  35. Kim JH, Kim JI, Jang BH, Seo JG. The comparison of bone scan and MRI in osteoporotic compression fractures. Asian Spine J. 2010;4(2):89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skelet Radiol. 2014;43(4):485–92.

    Article  Google Scholar 

  37. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269(2):525–33.

    Article  PubMed  Google Scholar 

  38. Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, et al. Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology. 2017;284(1):161–8.

    Article  PubMed  Google Scholar 

  39. Fogelman I, Boyle IT. The bone scan in clinical practice. Scott Med J. 1980;25(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  40. Aggarwal A, Salunke P, Shekhar BR, Chhabra R, Singh P, Bhattacharya A, et al. The role of magnetic resonance imaging and positron emission tomography-computed tomography combined in differentiating benign from malignant lesions contributing to vertebral compression fractures. Surg Neurol Int. 2013;4(Suppl 5):S323–6.

    PubMed  PubMed Central  Google Scholar 

  41. Link TM, Guglielmi G, van Kuijk C, Adams JE. Radiologic assessment of osteoporotic vertebral fractures: diagnostic and prognostic implications. Eur Radiol. 2005;15(8):1521–32.

    Article  PubMed  Google Scholar 

  42. Kubota T, Yamada K, Ito H, Kizu O, Nishimura T. High-resolution imaging of the spine using multidetector-row computed tomography: differentiation between benign and malignant vertebral compression fractures. J Comput Assist Tomogr. 2005;29(5):712–9.

    Article  PubMed  Google Scholar 

  43. Uetani M, Hashmi R, Hayashi K. Malignant and benign compression fractures: differentiation and diagnostic pitfalls on MRI. Clin Radiol. 2004;59(2):124–31.

    Article  CAS  PubMed  Google Scholar 

  44. Linn J, Birkenmaier C, Hoffmann RT, Reiser M, Baur-Melnyk A. The intravertebral cleft in acute osteoporotic fractures: fluid in magnetic resonance imaging-vacuum in computed tomography? Spine (Phila Pa 1976). 2009;34(2):E88–93.

    Article  Google Scholar 

  45. Baur A, Stabler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology. 2002;225(3):730–5.

    Article  PubMed  Google Scholar 

  46. Malghem J, Maldague B, Labaisse MA, Dooms G, Duprez T, Devogelaer JP, et al. Intravertebral vacuum cleft: changes in content after supine positioning. Radiology. 1993;187(2):483–7.

    Article  CAS  PubMed  Google Scholar 

  47. Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging. 1997;7(2):394–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ishiyama M, Fuwa S, Numaguchi Y, Kobayashi N, Saida Y. Pedicle involvement on MR imaging is common in osteoporotic compression fractures. AJNR Am J Neuroradiol. 2010;31(4):668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shih TT, Huang KM, Li YW. Solitary vertebral collapse: distinction between benign and malignant causes using MR patterns. J Magn Reson Imaging. 1999;9(5):635–42.

    Article  CAS  PubMed  Google Scholar 

  50. Leeds NE, Kumar AJ, Zhou XJ, McKinnon GC. Magnetic resonance imaging of benign spinal lesions simulating metastasis: role of diffusion-weighted imaging. Top Magn Reson Imaging. 2000;11(4):224–34.

    Article  CAS  PubMed  Google Scholar 

  51. Yuzawa Y, Ebara S, Kamimura M, Tateiwa Y, Kinoshita T, Itoh H, et al. Magnetic resonance and computed tomography-based scoring system for the differential diagnosis of vertebral fractures caused by osteoporosis and malignant tumors. J Orthop Sci. 2005;10(4):345–52.

    Article  PubMed  Google Scholar 

  52. Takigawa T, Tanaka M, Sugimoto Y, Tetsunaga T, Nishida K, Ozaki T. Discrimination between malignant and benign vertebral fractures using magnetic resonance imaging. Asian Spine J. 2017;11(3):478–83.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Le Bihan DJ. Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: a closer step toward the “holy grail” of tissue characterization? Radiology. 1998;207(2):305–7.

    Article  PubMed  Google Scholar 

  54. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  55. Baur A, Huber A, Durr HR, Nikolaou K, Stabler A, Deimling M, et al. [Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence]. Rofo. 2002;174(1):70–5.

    Google Scholar 

  56. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23(6):906–12.

    PubMed  PubMed Central  Google Scholar 

  57. Maeda M, Sakuma H, Maier SE, Takeda K. Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol. 2003;181(5):1203–9.

    Article  PubMed  Google Scholar 

  58. Balliu E, Vilanova JC, Pelaez I, Puig J, Remollo S, Barcelo C, et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol. 2009;69(3):560–6.

    Article  CAS  PubMed  Google Scholar 

  59. Geith T, Schmidt G, Biffar A, Dietrich O, Durr HR, Reiser M, et al. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures. AJR Am J Roentgenol. 2012;199(5):1083–92.

    Article  PubMed  Google Scholar 

  60. Tang G, Liu Y, Li W, Yao J, Li B, Li P. Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skelet Radiol. 2007;36(11):1035–41.

    Article  Google Scholar 

  61. Chan JH, Peh WC, Tsui EY, Chau LF, Cheung KK, Chan KB, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.

    PubMed  PubMed Central  Google Scholar 

  63. Sung JK, Jee WH, Jung JY, Choi M, Lee SY, Kim YH, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271(2):488–98.

    Article  PubMed  Google Scholar 

  64. Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A. Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol. 2009;13(2):134–44.

    Article  PubMed  Google Scholar 

  65. Ragab Y, Emad Y, Gheita T, Mansour M, Abou-Zeid A, Ferrari S, et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out of phase} MR imaging. Eur J Radiol. 2009;72(1):125–33.

    Article  PubMed  Google Scholar 

  66. Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol. 2006;27(6):1183–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zajick DC Jr, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology. 2005;237(2):590–6.

    Article  PubMed  Google Scholar 

  68. Douis H, Davies AM, Jeys L, Sian P. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine. Eur Radiol. 2016;26(4):932–40.

    Article  CAS  PubMed  Google Scholar 

  69. Kim DH, Yoo HJ, Hong SH, Choi JY, Chae HD, Chung BM. Differentiation of Acute Osteoporotic and Malignant Vertebral Fractures by Quantification of Fat Fraction With a Dixon MRI Sequence. AJR Am J Roentgenol. 2017;209(6):1331–9.

    Article  PubMed  Google Scholar 

  70. Chen WT, Shih TT, Chen RC, Lo HY, Chou CT, Lee JM, et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging. 2002;15(3):308–14.

    Article  PubMed  Google Scholar 

  71. Biffar A, Dietrich O, Sourbron S, Duerr HR, Reiser MF, Baur-Melnyk A. Diffusion and perfusion imaging of bone marrow. Eur J Radiol. 2010;76(3):323–8.

    Article  PubMed  Google Scholar 

  72. Geith T, Biffar A, Schmidt G, Sourbron S, Durr HR, Reiser M, et al. Quantitative analysis of acute benign and malignant vertebral body fractures using dynamic contrast-enhanced MRI. AJR Am J Roentgenol. 2013;200(6):W635–43.

    Article  PubMed  Google Scholar 

  73. Savvopoulou V, Maris TG, Koureas A, Gouliamos A, Moulopoulos LA. Degenerative endplate changes of the lumbosacral spine: dynamic contrast-enhanced MRI profiles related to age, sex, and spinal level. J Magn Reson Imaging. 2011;33(2):382–9.

    Article  PubMed  Google Scholar 

  74. Arevalo-Perez J, Peck KK, Lyo JK, Holodny AI, Lis E, Karimi S. Differentiating benign from malignant vertebral fractures using T1 -weighted dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2015;42(4):1039–47.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhuang H, Sam JW, Chacko TK, Duarte PS, Hickeson M, Feng Q, et al. Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med Mol Imaging. 2003;30(8):1096–103.

    Article  PubMed  Google Scholar 

  76. Shon IH, Fogelman I. F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med. 2003;28(3):171–5.

    PubMed  Google Scholar 

  77. Bredella MA, Essary B, Torriani M, Ouellette HA, Palmer WE. Use of FDG-PET in differentiating benign from malignant compression fractures. Skelet Radiol. 2008;37(5):405–13.

    Article  Google Scholar 

  78. Cho WI, Chang UK. Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures. J Neurosurg Spine. 2011;14(2):177–83.

    Article  PubMed  Google Scholar 

  79. Bohdiewicz PJ, Wong CY, Kondas D, Gaskill M, Dworkin HJ. High predictive value of F-18 FDG PET patterns of the spine for metastases or benign lesions with good agreement between readers. Clin Nucl Med. 2003;28(12):966–70.

    Article  PubMed  Google Scholar 

  80. Kato K, Aoki J, Endo K. Utility of FDG-PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med. 2003;17(1):41–6.

    Article  PubMed  Google Scholar 

  81. Shin DS, Shon OJ, Byun SJ, Choi JH, Chun KA, Cho IH. Differentiation between malignant and benign pathologic fractures with F-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Skelet Radiol. 2008;37(5):415–21.

    Article  Google Scholar 

  82. Tokuda O, Harada Y, Ueda T, Ohishi Y, Matsunaga N. Malignant versus benign vertebral compression fractures: can we use bone SPECT as a substitute for MR imaging? Nucl Med Commun. 2011;32(3):192–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Samim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marshall, R.A., Samim, M. (2020). Radiographic Diagnosis of Patients with Vertebral Compression Fractures. In: Razi, A., Hershman, S. (eds) Vertebral Compression Fractures in Osteoporotic and Pathologic Bone. Springer, Cham. https://doi.org/10.1007/978-3-030-33861-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33861-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33860-2

  • Online ISBN: 978-3-030-33861-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics