Skip to main content

Pathophysiology and Epidemiology of Osteoporosis

  • Chapter
  • First Online:
Vertebral Compression Fractures in Osteoporotic and Pathologic Bone

Abstract

Osteoporosis is the most common disease of the bone affecting greater than 10.2 million adults in the USA. This disease is a deficiency in the normal quantity of bone in the body and is defined as a bone mineral density < 2.5 standard deviations below the mean in young healthy individuals. On a cellular level, there are several interconnecting pathways that result in increased absorption of bone. These pathways are affected by genetics, medications, and lifestyle factors. Understanding the epidemiology and pathophysiology of osteoporosis can improve the surgeon’s ability to care for this growing patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Becker C. Pathophysiology and clinical manifestations of osteoporosis. Clin Cornerstone. 2008;9(2):42–50. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/S1098-3597(09)62038-X.

    Article  PubMed  Google Scholar 

  3. Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47:S11–20.. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/S0020-1383(16)47003-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Seeman E, Delmas PD. Bone quality — the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    Article  CAS  PubMed  Google Scholar 

  5. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 1987;80(3):706–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akhter MP, Lappe JM, Davies KM, Recker RR. Transmenopausal changes in the trabecular bone structure. Bone. 2007;41(1):111–6. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/j.bone.2007.03.019.

    Article  CAS  PubMed  Google Scholar 

  7. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone. 1987;8(2):79–85. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/8756-3282(87)90074-3.

    Article  CAS  PubMed  Google Scholar 

  8. Silva MJ. Biomechanics of osteoporotic fractures. Injury. 2007;38(3):69–76. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/j.injury.2007.08.014.

    Article  Google Scholar 

  9. Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22(1):57–66. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/S8756-3282(97)00228-7.

    Article  CAS  PubMed  Google Scholar 

  10. Riggs BL, Melton LJ, Robb RA, et al. Population-Based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.

    Article  PubMed  Google Scholar 

  11. Rühli FJ, Müntener M, Henneberg M. Age-dependent changes of the normal human spine during adulthood. Am J Hum Biol. 2005;17(4):460–9.

    Article  PubMed  Google Scholar 

  12. Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res. 2001;16(12):2276–83.

    Article  CAS  PubMed  Google Scholar 

  13. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res. 1999;14(8):1394–403.

    Article  CAS  PubMed  Google Scholar 

  14. Khosla S. Minireview: The OPG/RANKL/RANK system.

    Google Scholar 

  15. Rossini M, Gatti D, Adami S. Involvement of WNT/ß-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Ominsky MS, Warmington KS, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578–88.

    Article  CAS  PubMed  Google Scholar 

  17. Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9:575–83.

    Article  CAS  PubMed  Google Scholar 

  18. Glantschnig H, Hampton RA, Lu P, et al. Generation and selection of novel fully human monoclonal antibodies that neutralize dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem. 2010;285(51):40135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4–8. https://doi.org/10.1016/j.pbiomolbio.2006.02.016.

    Article  CAS  PubMed  Google Scholar 

  21. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22(4):477–501.

    Article  CAS  PubMed  Google Scholar 

  22. Norman AW, Roth J, Orci L. The vitamin D endocrine system: Steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr Rev. 1982 Fall;3(4):331–66.

    Article  CAS  PubMed  Google Scholar 

  23. Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med. 1989;320(15):980–91.

    Article  CAS  PubMed  Google Scholar 

  24. Walters MR. Newly identified actions of the vitamin D endocrine system. Endocr Rev. 1992;13(4):719–64.

    CAS  PubMed  Google Scholar 

  25. Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.

    CAS  PubMed  Google Scholar 

  26. Currey J, editor. Bones: structure and mechanics. Princeton: Princeton University; 2002.

    Google Scholar 

  27. Boivin G, Lips P, Ott SM, et al. Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab. 2003;88(9):4199–205.

    Article  CAS  PubMed  Google Scholar 

  28. Boivin G, Meunier PJ. Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res. 2002;43(2–3):535–7.

    Article  CAS  PubMed  Google Scholar 

  29. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.

    Article  CAS  PubMed  Google Scholar 

  30. Recker R, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res. 2000;15(10):1965–73.

    Article  CAS  PubMed  Google Scholar 

  31. Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112(4):281–9. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/S0002-9343(01)01124-X.

    Article  CAS  PubMed  Google Scholar 

  32. Sarkar S, Mitlak BH, Wong M, Stock JL, Black DM, Harper KD. Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res. 2002;17(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  33. Armas LAG, Recker RR. Pathophysiology of osteoporosis. Endocrinol Metab Clin N Am. 2012;41(3):475–86. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/j.ecl.2012.04.006.

    Article  CAS  Google Scholar 

  34. Gilbert L, He X, Farmer P, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-α. Endocrinology. 2000;141(11):3956–64.

    Article  CAS  PubMed  Google Scholar 

  35. Cenci S, Toraldo G, Weitzmann MN, et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-γ-induced class II transactivator. Proc Natl Acad Sci. 2003;100(18):10405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest. 2002;110(11):1643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6.

    Article  PubMed  Google Scholar 

  38. Carmona R. Bone health and osteoporosis, a report of the surgeon general. US department of health and human services: Rockville, MD; 2004.

    Google Scholar 

  39. Bilezikian JP. Osteoporosis in men. J Clin Endocrinol Metab. 1999;84(10):3431–34.

    CAS  Google Scholar 

  40. Cummings SR, Browner W, Cummings SR, et al. Bone density at various sites for prediction of hip fractures. Lancet. 1993;341(8837):72–5. http://dx.doi.org.ezproxy.med.nyu.edu/10.1016/0140-6736(93)92555-8.

    Article  CAS  PubMed  Google Scholar 

  41. Rozental TD, Shah J, Chacko AT, Zurakowski D. Prevalence and predictors of osteoporosis risk in orthopaedic patients. Clin Orthop. 2009;468(7):1765–72.

    Article  PubMed Central  Google Scholar 

  42. Jackson RD, Mysiw WJ. Insights into the epidemiology of postmenopausal osteoporosis: the women’s health initiative. Semin Reprod Med. 2014;32(06):454–62.

    Article  PubMed  Google Scholar 

  43. Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.

    Article  CAS  PubMed  Google Scholar 

  44. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab. 2001;86(2):724–31.

    Article  CAS  Google Scholar 

  45. Hudec SMD, Camacho PM. Secondary causes of osteoporosis. Endocr Pract. 2013;19(1):120–8.

    Article  PubMed  Google Scholar 

  46. Amory JK, Watts NB, Easley KA, et al. Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab. 2004;89(2):503-510.

    Article  CAS  Google Scholar 

  47. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG. Osteopenia in exercise-associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endocrinol Metab. 2002;87(7):3162–8.

    Article  CAS  PubMed  Google Scholar 

  48. Grinspoon S, Thomas E, Pitts S, et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med. 2000;133(10):790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Montalcini T, Romeo S, Ferro Y, Migliaccio V, Gazzaruso C, Pujia A. Osteoporosis in chronic inflammatory disease: the role of malnutrition. Endocrine. 2013;43(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  50. Ardizzone S, Bollani S, Bettica P, Bevilacqua M, Molteni P, Porro GB. Altered bone metabolism in inflammatory bowel disease: there is a difference between crohn’s disease and ulcerative colitis. J Intern Med. 2000;247(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  51. Ferrari-Lacraz S, Ferrari S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int. 2011;22(2):435–46.

    Article  CAS  PubMed  Google Scholar 

  52. Emkey GR, Epstein S. Secondary osteoporosis: pathophysiology & diagnosis. Best Pract Res Clin Endocrinol Metab. 2014;28(6):911–35. https://doi-org.ezproxy.med.nyu.edu/10.1016/j.beem.2014.07.002.

    Article  PubMed  Google Scholar 

  53. Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(11):5045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165.

    Article  PubMed  Google Scholar 

  55. de Barbosa M, Marques EG, de FJA P, Machado AA, de Assis Pereira F, Barbosa F, Navarro AM. Impact of antiretroviral therapy on bone metabolism markers in HIV-seropositive patients. Bone. 2013;57(1):62–7. https://doi-org.ezproxy.med.nyu.edu/10.1016/j.bone.2013.07.019.

    Article  CAS  Google Scholar 

  56. Steinbuch M, Youket TE, Cohen S. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos Int. 2004;15(4):323–8.

    Article  CAS  PubMed  Google Scholar 

  57. Eastell R, Adams JE, Coleman RE, et al. Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. JCO. 2008;26(7):1051–7.

    Article  CAS  Google Scholar 

  58. Bouvard B, Soulié P, Hoppé E, et al. Fracture incidence after 3 years of aromatase inhibitor therapy. Ann Oncol. 2014;25(4):843–7.

    Article  CAS  PubMed  Google Scholar 

  59. Vestergaard P, Rejnmark L, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int. 2006;79(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  60. Gray SL, LaCroix AZ, Larson J, et al. Proton pump inhibitor use, hip fracture, and change in bone mineral density in postmenopausal women: results from the women’s health initiative. Arch Intern Med. 2010;170(9):765–71.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yu EW, Blackwell T, Ensrud KE, et al. Acid-suppressive medications and risk of bone loss and fracture in older adults. Calcif Tissue Int. 2008;83(4):251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Y, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296(24):2947–53.

    Article  CAS  PubMed  Google Scholar 

  63. Lee RH, Lyles KW, Colón-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mikati M, Dib L, Yamouy B, Sawaya R, Rahi A, Fuleihan G. Two randomized vitamin D trials in ambulatory patients on anti-convulsants: impact on bone. Neurology. 2006;67(11):14.

    Article  CAS  Google Scholar 

  65. Lee RH, Lyles KW, Sloane R, Colón-Emeric C. The association of newer anticonvulsant medications and bone mineral density. Endocr Pract. 2012. https://doi.org/10.4158/EP12119.OR.

  66. Diem SJ, Blackwell TL, Stone KL, et al. Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med. 2007;167(12):1240–5.

    Article  PubMed  Google Scholar 

  67. Yadav VK, Ryu J, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum: An entero-bone endocrine axis. Cell. 2008;135(5):825–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hopper JL, Seeman E. The bone density of female twins discordant for tobacco use. N Engl J Med. 1994;330(6):387–92.

    Article  CAS  PubMed  Google Scholar 

  69. Harper KD, Weber TJ. Secondary osteoporosis: diagnostic considerations. Endocrinol Metab Clin N Am. 1998;27(2):325–48. https://doi-org.ezproxy.med.nyu.edu/10.1016/S0889-8529(05)70008-6.

    Article  CAS  Google Scholar 

  70. Klein RF. Alcohol-induced bone disease: impact of ethanol on osteoblast proliferation. Alcohol Clin Exp Res. 1997;21(3):392–9.

    CAS  PubMed  Google Scholar 

  71. Díez A, Puig J, Serrano S, et al. Alcohol-induced bone disease in the absence of severe chronic liver damage. J Bone Miner Res. 1994;9(6):825–31.

    Article  PubMed  Google Scholar 

  72. Gordon GG, Altman K, Southren AL, Rubin E, Lieber CS. Effect of alcohol (ethanol) administration on sex-hormone metabolism in normal men. N Engl J Med. 1976;295(15):793–7.

    Article  CAS  PubMed  Google Scholar 

  73. Smith MD, Ross W, Ahern MJ. Missing a therapeutic window of opportunity: an audit of patients attending a tertiary teaching hospital with potentially osteoporotic hip and wrist fractures. J Rheumatol. 2001;28(11):2504.

    CAS  PubMed  Google Scholar 

  74. Kamel HK, Hussain MS, Tariq S, Perry HM, Morley JE. Failure to diagnose and treat osteoporosis in elderly patients hospitalized with hip fracture. Am J Med. 2000;109(4):326–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjit R. Konda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevens, N.M., Konda, S.R. (2020). Pathophysiology and Epidemiology of Osteoporosis. In: Razi, A., Hershman, S. (eds) Vertebral Compression Fractures in Osteoporotic and Pathologic Bone. Springer, Cham. https://doi.org/10.1007/978-3-030-33861-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33861-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33860-2

  • Online ISBN: 978-3-030-33861-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics