Skip to main content

Operative Treatment of Pathologic Compression Fractures of the Spine

  • Chapter
  • First Online:

Abstract

Patients with spinal column tumors, either primary or metastatic, may develop pathologic fractures of the vertebrae during any point in their cancer therapy. Such fractures can produce significant pain, disability, and hardship limiting function and activity. With the evolution of cancer therapeutics, patients are living longer with cancer. Pain associated with fractures of the spinal column is a major issue. With the development of modern surgical techniques, surgery to stabilize these fractures is possible and can be achieved in a number of different ways. Specific decision-making algorithms have been developed to help guide the evaluation, clinical management, and therapeutic interventions for pathologic fractures. This chapter provides a comprehensive evidence-based guide of the surgical management of pathological compression fractures of the spinal column utilizing representative cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  2. Bilsky MH, Boakye M, Collignon F, Kraus D, Boland P. Operative management of metastatic and malignant primary subaxial cervical tumors. J Neurosurg Spine. 2005;2(3):256–64.

    Article  PubMed  Google Scholar 

  3. Weber MH, Burch S, Buckley J, Schmidt MH, Fehlings MG, Vrionis FD, et al. Instability and impending instability of the thoracolumbar spine in patients with spinal metastases: a systematic review. Int J Oncol. 2011;38(1):5–12.

    PubMed  Google Scholar 

  4. Du Bois M, Donceel P. Outcome and cost of spinal fractures and spinal tumors. Eur Spine J. 2010;19(Suppl 1):S74–8.

    Article  PubMed Central  Google Scholar 

  5. Oda I, Abumi K, Ito M, Kotani Y, et al. Palliative spinal reconstruction using cervical pedicle screws for metastatic lesions of the spine: a retrospective analysis of 32 cases. Spine (Phila Pa 1976). 2006;31(13):1439–44.

    Article  Google Scholar 

  6. Yao A, Sarkiss CA, Ladner TR, 3rd Jenkins AL. Contemporary spinal oncology treatment paradigms and outcomes for metastatic tumors to the spine: a systematic review of breast, prostate, renal, and lung metastases. J Clin Neurosci. 2017;41:11–23. Available from: http://dx.doi.org/10.1016/j.jocn.2017.04.004.

    Article  PubMed  Google Scholar 

  7. Rose PS, Laufer I, Boland PJ, Hanover A, Bilsky MH, Yamada J, et al. Risk of fracture after single fraction image-guided intensity-modulated radiation therapy to spinal metastases. J Clin Oncol. 2009;27(30):5075–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saad F, Lipton A, Cook R, Chen Y, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110(8):1860–7.

    Article  PubMed  Google Scholar 

  9. Vazifehdan F, Karantzoulis VG, Igoumenou VG. Surgical treatment for metastases of the cervical spine. Eur J Orthop Surg Traumatol. 2017;27(6):763–75.

    Article  PubMed  Google Scholar 

  10. Huo M, Sahgal A, Pryor D, Redmond K, Lo S, Foote M. Stereotactic spine radiosurgery: review of safety and efficacy with respect to dose and fractionation. Surg Neurol Int. 2017;8:30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Myrehaug S, Sahgal A, Hayashi M, Levivier M, Ma L, Martinez R, et al. Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine. 2017;27(4):428–35.

    Article  PubMed  Google Scholar 

  12. Redmond KJ, Robertson S, Lo SS, Soltys SG, Ryu S, McNutt T, et al. Consensus contouring guidelines for postoperative stereotactic body radiation therapy for metastatic solid tumor malignancies to the spine. Int J Radiat Oncol Biol Phys. 2017;97(1):64–74. Available from: http://dx.doi.org/10.1016/j.ijrobp.2016.09.014.

    Article  PubMed  Google Scholar 

  13. Sahgal A, Whyne CM, Ma L, Larson DA, Fehlings MG. Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases. Lancet Oncol. 2013;14(8):e310–20. https://doi.org/10.1016/S1470-2045(13)70101-3.

    Article  PubMed  Google Scholar 

  14. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41(6):503–10. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0305737215000560.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Puvanesarajah V, Lo SL, Aygun N, Liauw JA, Jusué-torres I, Lina IA, et al. Prognostic factors associated with pain palliation after spine stereotactic body radiation therapy. J Neurosurg Spine. 2015;23(5):620–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smith VA, Lentsch EJ. Life-threatening cervical spine collapse as a result of postradiation osteonecrosis-case report and review of the literature. Head Neck. 2013;35(5):E142–6.

    Article  PubMed  Google Scholar 

  17. Whyne CM. Biomechanics of metastatic disease in the vertebral column. Neurol Res. 2014;36:493–501.

    Article  PubMed  Google Scholar 

  18. Al-Omair A, Smith R, Kiehl T-R, Lao L, Yu E, Massicotte EM, et al. Radiation-induced vertebral compression fracture following spine stereotactic radiosurgery: clinicopathological correlation. J Neurosurg Spine. 2013;18:430–5.

    Article  PubMed  Google Scholar 

  19. Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol. 2007;25(11):1423–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17416863.

    Article  PubMed  Google Scholar 

  20. Cox BW, Spratt DE, Lovelock M, Bilsky MH, Lis E, Ryu S, et al. International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;83(5):e597–605. https://doi.org/10.1016/j.ijrobp.2012.03.009.

    Article  PubMed  Google Scholar 

  21. Jawad MS, Fahim DK, Gerszten PC, Flickinger JC, Sahgal A, Grills IS, et al. Vertebral compression fractures after stereotactic body radiation therapy: a large, multi-institutional, multinational evaluation. J Neurosurg Spine. 2016;24:928–36.

    Article  PubMed  Google Scholar 

  22. Thibault I, Al-Omair A, Masucci GL, Masson-Côté L, Lochray F, Korol R, et al. Spine stereotactic body radiotherapy for renal cell cancer spinal metastases: analysis of outcomes and risk of vertebral compression fracture. J Neurosurg Spine. 2014;21:711–8.

    PubMed  Google Scholar 

  23. Barzilai O, DiStefano N, Lis E, Yamada Y, Lovelock DM, Fontanella AN, et al. Safety and utility of kyphoplasty prior to spine stereotactic radiosurgery for metastatic tumors: a clinical and dosimetric analysis. J Neurosurg Spine. 2018;28(1):72–8. Available from: http://thejns.org/doi/10.3171/2017.5.SPINE1746.

    PubMed  Google Scholar 

  24. Sung S-H, Chang U-K. Evaluation of Risk Factors for Vertebral Compression Fracture after Stereotactic Radiosurgery in Spinal Tumor Patients. Korean J Spine. 2014;11(3):103. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25346753.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guckenberger M, Mantel F, Gerszten PC, Flickinger JC, Sahgal A, Létourneau D, et al. Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis. Radiat Oncol. 2014;9(1):226. Available from: http://ro-journal.biomedcentral.com/articles/10.1186/s13014-014-0226-2.

  26. Boehling NS, Grosshans DR, Allen PK, McAleer MF, Burton AW, Azeem S, et al. Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J Neurosurg Spine. 2013;31(27):5–8.

    Google Scholar 

  27. Sahgal A, Atenafu EG, Chao S, Al-Omair A, Boehling N, Balagamwala EH, et al. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol. 2013;31:3426.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cunha MVR, Al-Omair A, Atenafu EG, Masucci GL, Letourneau D, Korol R, et al. Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT): analysis of predictive factors. Radiat Oncol Biol. 2012;84(3):e343–9. Available from: http://dx.doi.org/10.1016/j.ijrobp.2012.04.034.

    Article  PubMed  Google Scholar 

  29. Germano IM, Carai A, Pawha P, Blacksburg S, Lo YC, Green S. Clinical outcome of vertebral compression fracture after single fraction spine radiosurgery for spinal metastases. Clin Exp Metastasis. 2016;33(2):143–9.

    Article  PubMed  Google Scholar 

  30. Roesch J, Cho JBC, Fahim DK, Gerszten PC, Flickinger JC, Grills IS, et al. Risk for surgical complications after previous stereotactic body radiotherapy of the spine. Radiat Oncol. 2017;12(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Virk MS, Han JE, Reiner AS, Mclaughlin LA, Sciubba DM, Lis E, et al. Frequency of symptomatic vertebral body compression fractures requiring intervention following single-fraction stereotactic radiosurgery for spinal metastases. Neurosurg Focus. 2017;42:1–8.

    Article  Google Scholar 

  32. Boyce-Fappiano D, Elibe E, Schultz L, Ryu S, Siddiqui MS, Chetty I, et al. Analysis of the factors contributing to vertebral compression fractures after spine stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2017;97(2):236–45. Available from: http://dx.doi.org/10.1016/j.ijrobp.2016.09.007.

    Article  PubMed  Google Scholar 

  33. Lee SH, Tatsui CE, Ghia AJ, Amini B, Li J, Zavarella SM, et al. Can the spinal instability neoplastic score prior to spinal radiosurgery predict compression fractures following stereotactic spinal radiosurgery for metastatic spinal tumor? a post hoc analysis of prospective phase II single-institution trials. J Neurooncol. 2016;126(3):509–17.

    Article  PubMed  Google Scholar 

  34. Massicotte E, Foote M, Reddy R, Sahgal A. Minimal access spine surgery (MASS) for decompression and stabilization performed as an out-patient procedure for metastatic spinal tumours followed by spine stereotactic body radiotherapy (SBRT): first report of technique and preliminary outcomes. Technol Cancer Res Treat. 2012;11(1):15–25.

    Article  PubMed  Google Scholar 

  35. Thibault I, Atenafu EG, Chang E, Chao S, Ameen A-O, Zhou S, et al. Risk of vertebral compression fracture specific to osteolytic renal cell carcinoma spinal metastases after stereotactic body radiotherapy: A multi-institutional study. J Radiosurg SBRT. 2015;3(4):297–305. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29296412.

  36. Thibault I, Whyne CM, Zhou S, Campbell M, Atenafu EG, Myrehaug S, et al. Volume of lytic vertebral body metastatic disease quantified using computed tomography based image-segmentation predicts fracture risk following spine stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2017;97(1):75–81.

    Article  PubMed  Google Scholar 

  37. Lam T-C, Uno H, Krishnan M, Lutz S, Groff M, Cheney M, Balboni T. Adverse outcomes after palliative radiation therapy for uncomplicated spine metastases: role of spinal instability and single-fraction radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93(2):373–81.

    Article  PubMed  Google Scholar 

  38. Fisher CG, Dipaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the spine oncology study group. Spine (Phila Pa 1976). 2010;35(22):E1221–9.

    Google Scholar 

  39. Gerszten PC, Germanwala A, Burton SA, Welch WC, Ozhasoglu C, Vogel WJ. Combination kyphoplasty and spinal radiosurgery: a new treatment paradigm for pathological fractures. J Neurosurg Spine. 2005;3(4):296–301.

    Article  PubMed  Google Scholar 

  40. Mesfin A, Buchowski JM, Gokaslan ZL, Bird JE. Management of metastatic cervical spine tumors. J Am Acad Orthop Surg. 2015;23(1):38–46.

    Article  PubMed  Google Scholar 

  41. Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8.

    Article  PubMed  Google Scholar 

  42. Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–51.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sayama CM, Schmidt MH, Bisson EF. Cervical spine metastases: techniques for anterior reconstruction and stabilization. Neurosurg Rev. 2012;35(4):463–75.

    Article  PubMed  Google Scholar 

  44. Dammers R, Bijvoet HWC, Driesse MJ, Avezaat CCJ. Occurrence of malignant vertebral fractures in an emergency room setting. Emerg Med J. 2007;24(10):707–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mummaneni PV, Lu DC, Dhall SS, Mummaneni VP, Chou D. C1 lateral mass fixation: a comparison of constructs. Neurosurgery. 2010;66(3 Suppl):153–60.

    Article  PubMed  Google Scholar 

  46. Bilsky MH, Shannon FJ, Sheppard S, Prabhu V, Boland PJ. Diagnosis and management of a metastatic tumor in the atlantoaxial spine. Spine (Phila Pa 1976). 2002;27(10):1062–9.

    Article  Google Scholar 

  47. Fung KY, Law SW. Management of malignant atlanto-axial tumours. J Orthop Surg (Hong Kong). 2005;13(3):232–9.

    Article  CAS  Google Scholar 

  48. Moulding HD, Bilsky MH. Metastases to the craniovertebral junction. Neurosurgery. 2010;66(3 Suppl):113–8.

    Article  PubMed  Google Scholar 

  49. Zwolak P, Kröber M. Acute neck pain caused by atlanto-axial instability secondary to pathologic fracture involving odontoid process and C2 vertebral body: treatment with radiofrequency thermoablation, cement augmentation and odontoid screw fixation. Arch Orthop Trauma Surg. 2015;135(9):1211–5.

    Article  PubMed  Google Scholar 

  50. Wind JJ, Ammerman JM. Pathologic cervical burst fracture presenting with airway compromise. South Med J. 2010;103(6):551–3.

    Article  PubMed  Google Scholar 

  51. Samanci Y, Togay HS, Yakar R, Kabukcuoglu F, Celik SE. Acute hydrocephalus due to a primary malignant peripheral nerve sheath tumor of the cervicothoracic junction: A case report and review of the literature. Neurochirurgie. 2017;63(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  52. Shah LM, Salzman KL. Imaging of spinal metastatic disease. Int J Surg Oncol. 2011;2011:769753.

    PubMed  PubMed Central  Google Scholar 

  53. Hunter A, McGreevy J, Linden J. Pathologic C-spine fracture with low risk mechanism and normal physical exam. Am J Emerg Med. 2017;35(9):1383.e1–2.

    Article  PubMed  Google Scholar 

  54. Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine (Phila Pa 1976). 2012;37(12):E736–44.

    Article  Google Scholar 

  55. Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics. 2003;23(1):179–87.

    Article  PubMed  Google Scholar 

  56. Maccauro G, Spinelli MS, Mauro S, Perisano C, Graci C, Rosa MA. Physiopathology of spine metastasis. Int J Surg Oncol. 2011;2011:107969.

    Article  Google Scholar 

  57. Placantonakis DG, Laufer I, Wang JC, Beria JS, Boland P, Bilsky M. Posterior stabilization strategies following resection of cervicothoracic junction tumors: review of 90 consecutive cases. J Neurosurg Spine. 2008;9:111–9.

    Article  PubMed  Google Scholar 

  58. Fisher CG, Schouten R, Versteeg AL, Boriani S, Pal Varga P, Rhines LD, et al. Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases. Radiat Oncol. 2014;9:1–7. Available from: http://www.ro-journal.com/content/9/1/69.

  59. Fisher CG, Versteeg AL, Schouten R, Boriani S, Varga PP, Rhines LD, et al. Reliability of the spinal instability neoplastic scale among radiologists: An assessment of instability secondary to spinal metastases. Am J Roentgenol. 2014;203:869.

    Article  Google Scholar 

  60. Versteeg AL, van der Velden JM, Verkooijen HM, van Vulpen M, Oner FC, Fisher CG, et al. The Effect of introducing the spinal instability neoplastic score in routine clinical practice for patients with spinal metastases. Oncologist. 2016;21(1):95–101.

    Article  PubMed  Google Scholar 

  61. Arana E, Kovacs FM, Royuela A, Asenjo B, Pérez-Ramírez Ú, Zamora J, et al. Spine Instability Neoplastic Score: agreement across different medical and surgical specialties. Spine J. 2016;16(5):591–9. Available from: http://dx.doi.org/10.1016/j.spinee.2015.10.006.

  62. Fourney DR, Frangou EM, Ryken TC, DiPaola CP, Shaffrey CI, Berven SH, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7.

    Article  PubMed  Google Scholar 

  63. Fox S, Spiess M, Hnenny L, Fourney DR. Spinal Instability Neoplastic Score (SINS): reliability among spine fellows and resident physicians in orthopedic surgery and neurosurgery. Global Spine J. 2017;7(8):744–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gallizia E, Apicella G, Cena T, Di Genesio Pagliuca M, Deantonio L, Krengli M. The spine instability neoplastic score (SINS) in the assessment of response to radiotherapy for bone metastases. Clin Transl Oncol. 2017;19(11):1382–7.

    Article  CAS  PubMed  Google Scholar 

  65. Versteeg AL, Verlaan JJ, Sahgal A, Mendel E, Quraishi NA, Fourney DR, et al. The Spinal Instability Neoplastic Score: impact on oncologic decision-making. Spine (Phila Pa 1976). 2016;41(Suppl 20):S231–7.

    Article  PubMed  Google Scholar 

  66. Huisman M, Van Der Velden JM, Van Vulpen M, Van Den Bosch MAAJ, Chow E, Öner FC, et al. Spinal instability as defined by the spinal instability neoplastic score is associated with radiotherapy failure in metastatic spinal disease. Spine J. 2014;14(12):2835–40.

    Article  PubMed  Google Scholar 

  67. Shah AN, Pietrobon R, Richardson WJ, Myers BS. Patterns of tumor spread and risk of fracture and epidural impingement in metastatic vertebrae. J Spinal Disord Tech. 2003;16(1):83–9.

    Article  PubMed  Google Scholar 

  68. Aoude A, Amiot LP. A comparison of the modified Tokuhashi and Tomita scores in determining prognosis for patients afflicted with spinal metastasis. Can J Surg. 2014;57(3):188–93.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bilsky MH, Laufer I. Burch S. Shifting paradigms in the treatment of metastatic spine disease. 2009;34(22):101–7.

    Google Scholar 

  70. Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.

    Article  PubMed  Google Scholar 

  71. Dabravolski D, Eßer J, Lahm A, Merk H. Surgical treatment of tumours and metastases of the spine by minimally invasive cavity-coblation method. J Orthop Surg. 2017;25(1):2309499016684505.

    Article  Google Scholar 

  72. Li Z, Long H, Guo R, Xu J, Wang X, Cheng X, et al. Surgical treatment indications and outcomes in patients with spinal metastases in the cervicothoracic junction (CTJ). J Orthop Surg Res. 2018;13(1):1–9.

    Article  Google Scholar 

  73. Schnake KJ, Tropiano P, Berjano P, Lamartina C. Cervical spine surgical approaches and techniques. Eur Spine J. 2016;25(Suppl 4):486–7.

    Article  PubMed  Google Scholar 

  74. Jandial R, Kelly B, Chen MY. Posterior-only approach for lumbar vertebral column resection and expandable cage reconstruction for spinal metastases. J Neurosurg Spine. 2013;19(1):27–33.

    Article  PubMed  Google Scholar 

  75. Berenson J, Pflugmacher R, Jarzem P, Zonder J, Schechtman K, Tillman JB, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35.

    Article  PubMed  Google Scholar 

  76. Fehlings MG, David KS, Vialle L, Vialle E, Setzer M, Vrionis FD. Decision making in the surgical treatment of cervical spine metastases. Spine (Phila Pa 1976). 2009;34(22 Suppl):S108–17.

    Article  Google Scholar 

  77. Wang VY, Chou D. The cervicothoracic junction. Neurosurg Clin N Am. 2007;18(2):365–71.

    Article  PubMed  Google Scholar 

  78. Zuckerman SL, Kreines F, Powers A, Iorgulescu JB, Elder JB, Bilsky MH, et al. Stabilization of tumor-associated craniovertebral junction instability: indications, operative variables, and outcomes. Neurosurgery. 2017;81(2):251–8.

    Article  PubMed  Google Scholar 

  79. Roldan H, Ribas-Nijkerk JC, Perez-Orribo L, Garcia-Marin V. Stabilization of the cervicothoracic junction in tumoral cases with a hybrid less invasive-minimally invasive surgical technique: report of two cases. J Neurol Surg A Cent Eur Neurosurg. 2014;75(3):236–40.

    PubMed  Google Scholar 

  80. Kawashima M, Tanriover N, Rhoton AL Jr, Ulm AJ, Matsushima T. Comparison of the far lateral and extreme lateral variants of the atlanto-occipital transarticular approach to anterior extradural lesions of the craniovertebral junction. Neurosurgery. 2003;53(3):662–75.

    Article  PubMed  Google Scholar 

  81. Azad TD, Esparza R, Chaudhary N, Chang SD. Stereotactic radiosurgery for metastasis to the craniovertebral junction preserves spine stability and offers symptomatic relief. J Neurosurg Spine. 2016;24(2):241–7.

    Article  PubMed  Google Scholar 

  82. Kirchner R, Himpe B, Schweder B, Jürgens C, Gille JJ, Faschingbauer M. Das klinische Outcome okzipitozervikaler Stabilisierungen bei Metastasen der oberen Halswirbelsäule: Eine konsekutive Fallserie mit systematischem Review der Literatur [The clinical outcome after occipitocervical fusion due to metastases of the upper cervical spine: a consecutive case series and a systematic review of the literature]. Z Orthop Unfall. 2014;152(4):358–65.

    Article  CAS  PubMed  Google Scholar 

  83. Shin H, Barrenechea IJ, Lesser J, Sen C, Perin NI. Occipitocervical fusion after resection of craniovertebral junction tumors. J Neurosurg Spine. 2006;4(2):137–44.

    Article  PubMed  Google Scholar 

  84. Sun G, Wang LJ, Jin P, Liu XW, Li M. Vertebroplasty for treatment of osteolytic metastases at C2 using an anterolateral approach. Pain Physician. 2013;16(4):E427–34.

    PubMed  Google Scholar 

  85. Masala S, Anselmetti GC, Muto M, Mammucari M, Volpi T, Simonetti G. Percutaneous vertebroplasty relieves pain in metastatic cervical fractures. Clin Orthop Relat Res. 2011;469(3):715–22.

    Article  CAS  PubMed  Google Scholar 

  86. De la Garza-Ramos R, Benvenutti-Regato M, Caro-Osorio E. Vertebroplasty and kyphoplasty for cervical spine metastases: a systematic review and meta-analysis. Int J Spine Surg. 2016;10:7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Monterumici DA, Narne S, Nena U, Sinigaglia R. Transoral kyphoplasty for tumors in C2. Spine J. 2007;7(6):666–70.

    Article  PubMed  Google Scholar 

  88. De Iure F, Donthineni R, Boriani S. Outcomes of C1 and C2 posterior screw fixation for upper cervical spine fusion. Eur Spine J. 2009;18(Suppl 1):2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ailon T, Torabi R, Fisher CG, Rhines LD, Clarke MJ, Bettegowda C, et al. Management of locally recurrent chordoma of the mobile spine and sacrum: a systematic review. Spine (Phila Pa 1976). 2016;41(Suppl 20):S193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fourney DR, York JE, Cohen ZR, Suki D, Rhines LD, Gokaslan ZL. Management of atlantoaxial metastases with posterior occipitocervical stabilization. J Neurosurg. 2003;98(2 Suppl):165–70.

    Google Scholar 

  91. Kast E, Mohr K, Richter HP, Börm W. Complications of transpedicular screw fixation in the cervical spine. Eur Spine J. 2006;15(3):327–34.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yoshihara H, Passias PG, Errico TJ. Screw-related complications in the subaxial cervical spine with the use of lateral mass versus cervical pedicle screws. a systematic review. J Neurosurg Spine. 2013;19(5):614–23.

    PubMed  Google Scholar 

  93. Ringel F, Reinke A, Stüer C, Meyer B, Stoffel M. Posterior C1-2 fusion with C1 lateral mass and C2 isthmic screws: accuracy of screw position, alignment and patient outcome. Acta Neurochir (Wien). 2012;154(2):305–12.

    Article  PubMed  Google Scholar 

  94. Caspar W, Pitzen T, Papavero L, Geisler FH, Johnson TA. Anterior cervical plating for the treatment of neoplasms in the cervical vertebrae. J Neurosurg. 1999;90(1 Suppl):27–34.

    Article  CAS  Google Scholar 

  95. Eleraky M, Setzer M, Vrionis FD. Posterior transpedicular corpectomy for malignant cervical spine tumors. Eur Spine J. 2010;19(2):257–62.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Waschke A, Walter J, Duenisch P, Kalff R, Ewald C. Anterior cervical intercorporal fusion in patients with osteoporotic or tumorous fractures using a cement augmented cervical plate system. J Spinal Disord Tech. 2013;26(3):112–7.

    Article  PubMed  Google Scholar 

  97. Clarke MJ, Zadnik PL, Groves ML, Sciubba DM, Witham TF, Bydon A, et al. Fusion following lateral mass reconstruction in the cervical spine. J Neurosurg Spine. 2015;22(2):139–50.

    PubMed  Google Scholar 

  98. Le H, Balabhadra R, Park J, Kim D. Surgical treatment of tumors involving the cervicothoracic junction. Neurosurg Focus. 2003;15(5):E3.

    Article  Google Scholar 

  99. Bayoumi AB, Efe IE, Berk S, Kasper EM, Toktas ZO, Konya D. Posterior rigid instrumentation of C7: surgical considerations and biomechanics at the cervicothoracic junction. A review of the literature. World Neurosurg. 2018;111:216–26.

    Article  PubMed  Google Scholar 

  100. Salem KM, Fisher CG. Anterior column reconstruction with PMMA: an effective long-term alternative in spinal oncologic surgery. Eur Spine J. 2016;25(12):3916–22.

    Article  PubMed  Google Scholar 

  101. Pointillart V, Aurouer N, Gangnet N, Vital JM. Anterior approach to the cervicothoracic junction without sternotomy: a report of 37 cases. Spine (Phila Pa 1976). 2007;32(25):2875–9.

    Article  PubMed  Google Scholar 

  102. Pointillart V, Aurouer N, Gangnet N, Vital JM. Anterior approach to the cervicothoracic junction without sternotomy: a report of 37 cases. Spine (Phila Pa 1976). 2007;32(25):2875–9.

    Article  PubMed  Google Scholar 

  103. Mazel C, Hoffmann E, Antonietti P, Grunenwald D, Henry M, Williams J. Posterior cervicothoracic instrumentation in spine tumors. Spine (Phila Pa 1976). 2004;29(11):1246–53.

    Article  PubMed  Google Scholar 

  104. De Ruiter GC, Nogarede CO, Wolfs JF, Arts MP. Quality of life after different surgical procedures for the treatment of spinal metastases: results of a single-center prospective case series. Neurosurg Focus. 2017;42(1):E17.

    Article  PubMed  Google Scholar 

  105. Guzik G. Quality of life of patients after surgical treatment of cervical spine metastases. BMC Musculoskelet Disord. 2016;17(1):1–6. Available from: http://dx.doi.org/10.1186/s12891-016-1175-8.

  106. Bae JW, Gwak HS, Kim S, Joo J, Shin SH, Yoo H, et al. Percutaneous vertebroplasty for patients with metastatic compression fractures of the thoracolumbar spine: clinical and radiological factors affecting functional outcomes. Spine J. 2016;16:355.

    Article  PubMed  Google Scholar 

  107. Papanastassiou ID, Phillips FM, Van Meirhaeghe J, Berenson JR, Andersson GBJ, Chung G, et al. Comparing effects of kyphoplasty, vertebroplasty, and non-surgical management in a systematic review of randomized and non-randomized controlled studies. Eur Spine J. 2012;21(9):1826–43.

    Article  PubMed  PubMed Central  Google Scholar 

  108. McGirt MJ, Parker SL, Wolinsky JP, Witham TF, Bydon A, Gokaslan ZL. Vertebroplasty and kyphoplasty for the treatment of vertebral compression fractures: an evidenced-based review of the literature. Spine J. 2009;9(6):501–8.

    Article  PubMed  Google Scholar 

  109. Frankel BM, Jones T, Wang C. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: A clinical evaluation. Neurosurgery. 2007;61:531.

    Article  PubMed  Google Scholar 

  110. Knoeller SM, Huwert O, Wolter T. Single stage corpectomy and instrumentation in the treatment of pathological fractures in the lumbar spine. Int Orthop. 2012;36(1):111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  111. De Ruiter GC, Lobatto DJ, Wolfs JF, Peul WC, Arts MP. Reconstruction with expandable cages after single- and multilevel corpectomies for spinal metastases: a prospective case series of 60 patients. Spine J. 2014;14(9):2085–93.

    Google Scholar 

  112. Viswanathan A, Abd-El-Barr MM, Doppenberg E, Suki D, Gokaslan Z, Mendel E, et al. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: A report of 95 patients. Eur Spine J. 2012;21:84.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wang JC, Boland P, Mitra N, Yamada Y, Lis E, Stubblefield M, et al. Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2004;1(3):287–98.

    PubMed  Google Scholar 

  114. Arts MP, Peul WC. Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients. Neurosurgery. 2008;63:537.

    Article  PubMed  Google Scholar 

  115. Eleraky M, Papanastassiou I, Tran ND, Dakwar E, Vrionis FD. Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors. Eur Spine J. 2011;20(8):1363–70.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yanamadala V, Rozman PA, Kumar JI, Schwab JH, Lee SG, Hornicek FJ, et al. Vascularized fibular strut autografts in spinal reconstruction after resection of vertebral chordoma or chondrosarcoma: a retrospective series. Neurosurgery. 2017;81:156.

    Article  PubMed  Google Scholar 

  117. Stamatopoulos T, Yanamadala V, Shin JH. Use of cadaveric models in simulation training in spinal procedures. In 2018 [cited 2018 Jul 6]. p. 119–30. Available from: http://link.springer.com/10.1007/978-3-319-75583-0_9.

    Chapter  Google Scholar 

  118. Soo Jang J, Lee SH, Rhee HC, Lee SH. Polymethylmethacrylate-augmented screw fixation for stabilization in metastatic spinal tumors Technical note. J Neurosurg Spine. 2002;96:131.

    Google Scholar 

  119. Amendola L, Gasbarrini A, Fosco M, Simoes CE, Terzi S, De Iure F, et al. Fenestrated pedicle screws for cement-augmented purchase in patients with bone softening: A review of 21 cases. J Orthop Traumatol. 2011;12:193.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Moussazadeh N, Rubin DG, McLaughlin L, Lis E, Bilsky MH, Laufer I. Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J. 2015;15(7):1609–17.

    Article  PubMed  Google Scholar 

  121. Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine (Phila Pa 1976). 2004;29(11):E212–6.

    Article  PubMed  Google Scholar 

  122. Özkan N, Sandalcioglu IE, Petr O, Kurniawan A, Dammann P, Schlamann M, et al. Minimally invasive transpedicular dorsal stabilization of the thoracolumbar and lumbar spine using the minimal access nontraumatic insertion system (MANTIS): preliminary clinical results in 52 patients. J Neurol Surgery, Part A Cent Eur Neurosurg. 2012;73(6):369–76.

    Google Scholar 

  123. Harel R, Doron O, Knoller N. Minimally invasive spine metastatic tumor resection and stabilization: new technology yield improved outcome. Biomed Res Int. 2015;2015:948373.

    Article  Google Scholar 

  124. Hansen-Algenstaedt N, Knight R, Beyerlein J, Gessler R, Wiesner L, Schaefer C. Minimal-invasive stabilization and circumferential spinal cord decompression in metastatic epidural spinal cord compression (MESCC). Eur Spine J. 2013;22:2142.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shea TM, Laun J, Gonzalez-Blohm SA, Doulgeris JJ, Lee WE, Aghayev K, et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. Biomed Res Int. 2014;2014:748393.

    Article  Google Scholar 

  126. Pennington Z, Ahmed AK, Molina CA, Ehresman J, Laufer I, Sciubba DM. Minimally invasive versus conventional spine surgery for vertebral metastases: a systematic review of the evidence. Ann Transl Med. 2018;6(6):103.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Donnelly DJ, Abd-El-Barr MM, Lu Y. Minimally invasive muscle sparing posterior-only approach for lumbar circumferential decompression and stabilization to treat spine metastasis - technical report. World Neurosurg. 2015;84(5):1484–90.

    Article  PubMed  Google Scholar 

  128. Smith ZA, Li Z, Chen NF, Raphael D, Khoo LT. Minimally invasive lateral extracavitary corpectomy: cadaveric evaluation model and report of 3 clinical cases. J Neurosurg Spine. 2012;16(5):463–70.

    PubMed  Google Scholar 

  129. Le Huec JC, Lesprit E, Guibaud JP, Gangnet N, Aunoble S. Minimally invasive endoscopic approach to the cervicothoracic junction for vertebral metastases: report of two cases. Eur Spine J. 2001;10(5):421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park MS, Deukmedjian AR, Uribe JS. Minimally invasive anterolateral corpectomy for spinal tumors. Neurosurg Clin N Am. 2014;25(2):317–25.

    Article  PubMed  Google Scholar 

  131. Sulaiman OAR, Garces J, Mathkour M, Scullen T, Jones RB, Arrington T, et al. Mini-open thoracolumbar corpectomy: perioperative outcomes and hospital cost analysis compared with open corpectomy. World Neurosurg. 2017;99:295.

    Article  PubMed  Google Scholar 

  132. Zuckerman SL, Laufer I, Sahgal A, Yamada YJ, Schmidt MH, Chou D, et al. When less is more: the indications for MIS techniques and separation surgery in metastatic spine disease. Spine (Phila Pa 1976). 2016;41(Suppl 20):S246–53.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Archavlis E, Papadopoulos N, Ulrich P. Corpectomy in destructive thoracolumbar spine disease: cost-effectiveness of 3 different techniques and implications for cost reduction of delivered care. Spine (Phila Pa 1976). 2015;40(7):E433–8.

    Article  PubMed  Google Scholar 

  134. Archavlis E, Schwandt E, Kosterhon M, Gutenberg A, Ulrich P, Nimer A, et al. A modified microsurgical endoscopic-assisted transpedicular corpectomy of the thoracic spine based on virtual 3-dimensional planning. World Neurosurg. 2016;91:424–33. Available from: http://dx.doi.org/10.1016/j.wneu.2016.04.043.

    Article  PubMed  Google Scholar 

  135. Gerszten PC, Monaco EA. Complete percutaneous treatment of vertebral body tumors causing spinal canal compromise using a transpedicular cavitation, cement augmentation, and radiosurgical technique. Neurosurg Focus. 2009;27(6):E9.

    Article  PubMed  Google Scholar 

  136. Bernard F, Lemée JM, Lucas O, Menei P. Postoperative quality-of-life assessment in patients with spine metastases treated with long-segment pedicle-screw fixation. J Neurosurg Spine. 2017;26(6):725–35.

    PubMed  Google Scholar 

  137. Zairi F, Arikat A, Allaoui M, Marinho P, Assaker R. Minimally invasive decompression and stabilization for the management of thoracolumbar spine metastasis. J Neurosurg Spine. 2012;17(1):19–23.

    PubMed  Google Scholar 

  138. Hariri O, Takayanagi A, Miulli DE, Siddiqi J, Vrionis F. Minimally invasive surgical techniques for management of painful metastatic and primary spinal tumors. Cureus. 2017;9(3):e1114.

    Google Scholar 

  139. Park HY, Lee SH, Park SJ, Kim ES, Lee CS, Eoh W. Minimally invasive option using percutaneous pedicle screw for instability of metastasis involving thoracolumbar and lumbar spine: a case series in a single center. J Korean Neurosurg Soc. 2015;57(2):100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim P, Kim SW. Bone cement-augmented percutaneous screw fixation for malignant spinal metastases: is it feasible? J Korean Neurosurg Soc. 2017;60(2):189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mobbs RJ, Park A, Maharaj M, Phan K. Outcomes of percutaneous pedicle screw fixation for spinal trauma and tumours. J Clin Neurosci. 2016;23:88–94.

    Article  PubMed  Google Scholar 

  142. Schizas C, Kosmopoulos V. Percutaneous surgical treatment of chance fractures using cannulated pedicle screws. Report of two cases. J Neurosurg Spine. 2007;7(1):71–4.

    PubMed  Google Scholar 

  143. Tancioni F, Navarria P, Pessina F, Marcheselli S, Rognone E, Mancosu P, et al. Early surgical experience with minimally invasive percutaneous approach for patients with metastatic epidural spinal cord compression (MESCC) to poor prognoses. Ann Surg Oncol. 2012;19:294.

    Article  PubMed  Google Scholar 

  144. Kumar N, Zaw AS, Reyes MR, Malhotra R, Wu PH, Makandura MC, et al. Versatility of percutaneous pedicular screw fixation in metastatic spine tumor surgery: a prospective analysis. Ann Surg Oncol. 2015;22(5):1604–11.

    Article  PubMed  Google Scholar 

  145. Tancioni F, Navarria P, Pessina F, Marcheselli S, Rognone E, Mancosu P, et al. Early surgical experience with minimally invasive percutaneous approach for patients with metastatic epidural spinal cord compression (MESCC) to poor prognoses. Ann Surg Oncol. 2012;19(1):294–300.

    Article  PubMed  Google Scholar 

  146. Versteeg AL, Verlaan JJ, de Baat P, Jiya TU, Stadhouder A, Diekerhof CH, et al. Complications after percutaneous pedicle screw fixation for the treatment of unstable spinal metastases. Ann Surg Oncol. 2016;23(7):2343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kwan MK, Lee CK, Chan CY. Minimally invasive spinal stabilization using fluoroscopic-guided percutaneous screws as a form of palliative surgery in patients with spinal metastasis. Asian Spine J. 2016;10(1):99–110.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sawakami K, Yamazaki A, Ishikawa S, Ito T, Watanabe K, Endo N. Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord Tech. 2012;25(2):E28–35.

    Article  Google Scholar 

  149. Ibrahim A, Crockard A, Antonietti P, Boriani S, Bünger C, Gasbarrini A, et al. Does spinal surgery improve the quality of life for those with extradural (spinal) osseous metastases? An international multicenter prospective observational study of 223 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2007. J Neurosurg Spine. 2008;8(3):271–8.

    PubMed  Google Scholar 

  150. Moliterno J, Veselis CA, Hershey MA, Lis E, Laufer I, Bilsky MH. Improvement in pain after lumbar surgery in cancer patients with mechanical radiculopathy. Spine J. 2014;14(10):2434–9.

    Article  PubMed  Google Scholar 

  151. Lee RS, Batke J, Weir L, Dea N, Fisher CG. Timing of surgery and radiotherapy in the management of metastatic spine disease: expert opinion. J Spine Surg. 2018;4(2):368–73.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Itshayek E, Yamada J, Bilsky M, Schmidt M, Shaffrey C, Gerszten P, et al. Timing of surgery and radiotherapy in the management of metastatic spine disease: a systematic review. Int J Oncol. 2010;36(3):533–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stamatopoulos, T., Shankar, G.M., Shin, J.H. (2020). Operative Treatment of Pathologic Compression Fractures of the Spine. In: Razi, A., Hershman, S. (eds) Vertebral Compression Fractures in Osteoporotic and Pathologic Bone. Springer, Cham. https://doi.org/10.1007/978-3-030-33861-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33861-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33860-2

  • Online ISBN: 978-3-030-33861-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics