Skip to main content

Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Abstract

MR images scanned at low magnetic field (\({<}1\)T) have lower resolution in the slice direction and lower contrast, due to a relatively small signal-to-noise ratio (SNR) than those from high field (typically 1.5T and 3T). We adapt the recent idea of Image Quality Transfer (IQT) to enhance very low-field structural images aiming to estimate the resolution, spatial coverage, and contrast of high-field images. Analogous to many learning-based image enhancement techniques, IQT generates training data from high-field scans alone by simulating low-field images through a pre-defined decimation model. However, the ground truth decimation model is not well-known in practice, and lack of its specification can bias the trained model, aggravating performance on the real low-field scans. In this paper we propose a probabilistic decimation simulator to improve robustness of model training. It is used to generate and augment various low-field images whose parameters are random variables and sampled from an empirical distribution related to tissue-specific SNR on a 0.36T scanner. The probabilistic decimation simulator is model-agnostic, that is, it can be used with any super-resolution networks. Furthermore we propose a variant of U-Net architecture to improve its learning performance. We show promising qualitative results from clinical low-field images confirming the strong efficacy of IQT in an important new application area: epilepsy diagnosis in sub-Saharan Africa where only low-field scanners are normally available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wadghiri, Y.Z., Johnson, G., Turnbull, D.H.: Sensitivity and performance time in MRI dephasing artifact reduction methods. Magn. Reson. Med. 45(3), 470–476 (2001)

    Article  Google Scholar 

  2. Sotiropoulos, S.N., et al.: Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013)

    Article  Google Scholar 

  3. Marques, J.P., Simonis, F.F.J., Webb, A.G.: Low-field MRI: an MR physics perspective. J. Magn. Reson. Imaging 49(6), 1528–1542 (2019)

    Article  Google Scholar 

  4. Brown, R.W., Cheng, Y.-C.N., Haacke, E.M., Thompson, M.R., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd edn. Wiley, Hoboken (2014)

    Book  Google Scholar 

  5. Bahrami, K., Shi, F., Zong, X., Shin, H.W., An, H., Shen, D.: Reconstruction of 7T-Like Images from 3T MRI. IEEE Trans. Med. Imaging 35(9), 2085–2097 (2016)

    Article  Google Scholar 

  6. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

    Chapter  Google Scholar 

  7. Cohen, J.P., Luck, M., Honari, S.: Distribution matching losses can hallucinate features in medical image translation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 529–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_60

    Chapter  Google Scholar 

  8. Alexander, D.C., et al.: Image quality transfer and applications in diffusion MRI. NeuroImage 152, 283–298 (2017)

    Article  Google Scholar 

  9. Tanno, R., Ghosh, A., Grussu, F., Kaden, E., Criminisi, A., Alexander, D.C.: Bayesian image quality transfer. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 265–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_31

    Chapter  Google Scholar 

  10. Tanno, R., Worrall, D.E., Ghosh, A., Kaden, E., Sotiropoulos, S.N., Criminisi, A., Alexander, D.C.: Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_70

    Chapter  Google Scholar 

  11. Blumberg, S.B., Tanno, R., Kokkinos, I., Alexander, D.C.: Deeper image quality transfer: training low-memory neural networks for 3D images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 118–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_14

    Chapter  Google Scholar 

  12. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26, 839–851 (2005)

    Article  Google Scholar 

  13. Heinrich, L., Bogovic, J.A., Saalfeld, S.: Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 135–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_16

    Chapter  Google Scholar 

  14. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CVPR 2016, 770–778 (2016)

    Google Scholar 

  16. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  17. Guerrero, R., et al.: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin. 17, 918–934 (2018)

    Article  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  19. Chollet, F., et al.: Keras (2015). https://keras.io

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS 2010, PMLR, vol. 9, pp. 249–256 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by EPSRC grants (EP/R014019/1, EP/R006032/1 and EP/M020533/1) and the NIHR UCLH Biomedical Research Centre. Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by NIH and Washington University. The 0.36T MRI data were acquired at the University College Hospital, Ibadan, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxiang Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, H. et al. (2019). Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics