Skip to main content

Fast Dynamic Perfusion and Angiography Reconstruction Using an End-to-End 3D Convolutional Neural Network

  • Conference paper
  • First Online:
  • 1700 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11905))

Abstract

Hadamard time-encoded pseudo-continuous arterial spin labeling (te-pCASL) is a signal-to-noise ratio (SNR)-efficient MRI technique for acquiring dynamic pCASL signals that encodes the temporal information into the labeling according to a Hadamard matrix. In the decoding step, the contribution of each sub-bolus can be isolated resulting in dynamic perfusion scans. When acquiring te-ASL both with and without flow-crushing, the ASL-signal in the arteries can be isolated resulting in 4D-angiographic information. However, obtaining multi-timepoint perfusion and angiographic data requires two acquisitions. In this study, we propose a 3D Dense-Unet convolutional neural network with a multi-level loss function for reconstructing multi-timepoint perfusion and angiographic information from an interleaved \(50\%\)-sampled crushed and \(50\%\)-sampled non-crushed data, thereby negating the additional scan time. We present a framework to generate dynamic pCASL training and validation data, based on models of the intravascular and extravascular te-pCASL signals. The proposed network achieved SSIM values of \(97.3 \pm 1.1\) and \(96.2 \pm 11.1\) respectively for 4D perfusion and angiographic data reconstruction for 313 test data-sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferlay, J., et al.: Cancer incidence and mortality worldwide: sources methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), 359–386 (2015)

    Article  Google Scholar 

  2. van Osch, M.J.P., Teeuwisse, W.M., Chen, Z., Suzuki, Y., Helle, M., Schmid, S.: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J. Cereb. Blood Flow Metab. 38(9), 1461–1480 (2018)

    Article  Google Scholar 

  3. Petersen, E.T., Mouridsen, K., Golay, X.: The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49(1), 104–113 (2010)

    Article  Google Scholar 

  4. Yousefi, S., et al.: Esophageal gross tumor volume segmentation using a 3D convolutional neural network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 343–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_40

    Chapter  Google Scholar 

  5. Elmahdy, M.S., et al.: Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate cancer. Med. Phys. 46, 3329–3343 (2019)

    Google Scholar 

  6. Gong, K., et al.: Iterative pet image reconstruction using convolutional neural network representation. TMI 38(3), 675–685 (2018)

    Google Scholar 

  7. Gong, E., Pauly, J., Zaharchuk, G.: Boosting SNR and/or resolution of arterial spin label (ASL) imaging using multi-contrast approaches with multi-lateral guided filter and deep networks. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii (2017)

    Google Scholar 

  8. Guo, J., Gong, E., Goubran, M., Fan, A., Khalighi, M., Zaharchuk, G.: Improving perfusion image quality and quantification accuracy using multi-contrast MRI and deep convolutional neural networks. In: ISMRM, Paris, France (2018)

    Google Scholar 

  9. Ho, K.C., Scalzo, F., Sarma, K.V., El-Saden, S., Arnold, C.W.: A temporal deep learning approach for MR perfusion parameter estimation in stroke. In: 23rd ICPR, pp. 1315–1320. IEEE (2016)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  11. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: CVPR, pp. 11–19 (2017)

    Google Scholar 

  12. Zhao, L., Fielden, S.W., Feng, X., Wintermark, M., Mugler III, J.P., Meyer, C.H.: Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction. Neuroimage 121, 205–216 (2015)

    Article  Google Scholar 

  13. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38(2), 295–307 (2015)

    Article  Google Scholar 

  14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  15. Buxton, R.B., Frank, L.R., Wong, E.C., Siewert, B., Warach, S., Edelman, R.R.: A general kinetic model for quantitative perfusion imaging with arterial spin labeling. MRM 40(3), 383–396 (1998)

    Article  Google Scholar 

  16. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Pike, G.B., Evans, A.C.: Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5, 425 (1997)

    Google Scholar 

  17. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. TMI 29(1), 196–205 (2010)

    Google Scholar 

  18. Hirschler, L., et al.: Transit time mapping in the mouse brain using time-encoded pCASL. NMR Biomed. 31(2), e3855 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financed by the Netherlands Organization for Scientific Research (NWO), VICI project 016.160.351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Yousefi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yousefi, S. et al. (2019). Fast Dynamic Perfusion and Angiography Reconstruction Using an End-to-End 3D Convolutional Neural Network. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics