Skip to main content

Multiple Roles of Membrane Lipids: Implications for Health and Disease

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

Lipids are a major class of molecules which fulfil several functions. Cell membrane lipid composition can vary substantially, suggesting that different lipids are required for different functions. The lipid matrix is not simply the physical scaffold for proteins or the structural barrier that isolates and defines cells and organelles, but, it is also active in many cellular functions. Caveolae represent membrane compartments enriched with sphingolipids, cholesterol and signaling molecules whose structural integrity is essential for the cellular response. Levels of lipid species can change in response to diet, physiological and environmental factors. In human blood, transport of lipids is exerted by lipoproteins. Alterations of membrane and/or lipoprotein lipid composition, associated either with adaptive responses or with the aetiology of the disease, have been described in several pathologies. The current understanding of lipids, the structures they form, their roles in cells and lipoproteins, and their physico-chemical properties are the result of many years of our research. Aim of the paper is to review the history, current status, and future of lipids in cell and lipoprotein biology. A promising field of research is the study of structures derived from lipids as carriers of bioactive molecules to deliver site-specific targeting ligands in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacchetti T, Masciangelo S, Armeni T et al (2014) Glycation of human high density lipoprotein by methylglyoxal: effect on HDL-paraoxonase activity. Metabolism 63(3):307–311

    Article  Google Scholar 

  2. Bacchetti T, Vignini A, Giulietti A et al (2015) Higher levels of oxidized low density lipo-proteins in Alzheimer’s disease patients: roles for platelet activating factor acetyl hydrolase and paraoxonase-1. J Alzheimers Dis 46:179–186

    Article  Google Scholar 

  3. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  Google Scholar 

  4. Brown RE (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111:1–9

    Google Scholar 

  5. Camont L, Lhomme M, Rached F et al (2013) Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol 33:2715–2723

    Article  Google Scholar 

  6. Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  Google Scholar 

  7. Esterbauer H, Wäg G, Puhl H (1993) Lipid peroxidation and its role in atherosclerosis. Br Med Bull 49:566–576

    Article  Google Scholar 

  8. Fantini J, Garmy N, Mahfoud R et al (2002) Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med 20:1–22

    Google Scholar 

  9. Ferretti G, Bacchetti T (2011) Peroxidation of lipoproteins in multiple sclerosis. J Neurol Sci 311:92–97

    Article  Google Scholar 

  10. Ferretti G, Alleva R, Taus M et al (1994) Abnormalities of plasma lipoprotein composition and fluidity in psoriasis. Acta Derm Venereol 74:171–175

    Google Scholar 

  11. Ferretti G, Dotti M, Bartolotta E et al (1998) Changes of erythrocyte membrane fluidity associated with childhood obesity: a molecular study using fluorescence spectroscopy. Biochem Med Metab Biol 40:101–108

    Article  Google Scholar 

  12. Ferretti G, Bacchetti T, Marchionni C et al (2001) Effect of glycation of high density lipo-proteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol 38(4):163–169

    Google Scholar 

  13. Ferretti G, Bacchetti T, Marotti E, Curatola G (2003) Effect of homocysteinylation on human high-density lipoproteins: a correlation with paraoxonase activity. Metabolism 52(2):146–151

    Article  Google Scholar 

  14. Ferretti G, Bacchetti T, Moroni C et al (2004) Effect of homocysteinylation of low density lipo-proteins on lipid peroxidation of human endothelial cells. J Cell Biochem 15;92(2):351–360

    Google Scholar 

  15. Ferretti G, Bacchetti T, Principi F et al (2005) Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 11:677–682

    Google Scholar 

  16. Ferretti G, Bacchetti T, Nègre-Salvayre A et al (2006) Structural modifications of HDL and functional consequences. Atherosclerosis 184(1):1–7

    Article  Google Scholar 

  17. Ferretti G, Bacchetti T, Masciangelo S et al (2008) Lipid peroxidation in stroke patients. Clin Chem Lab Med 46:113–117

    Article  Google Scholar 

  18. Ferretti G, Bacchetti T, Masciangelo S, Bicchiega V (2010) HDL-paraoxonase and membrane lipid peroxidation: a comparison between healthy and obese subjects. Obesity (Silver Spring) 18:1079–1084

    Article  Google Scholar 

  19. Ferretti G, Bacchetti T, Masciangelo S et al (2012) Altered inflammation, paraoxonase-1 activity and HDL physicochemical properties in obese humans with and without Prader-Willi syndrome. Dis Model Mech 5:698–705

    Article  Google Scholar 

  20. Ferretti G, Bacchetti T, Saturni L et al (2012) Lipid peroxidation and paraoxonase-1 activity in celiac disease. J Lipids 2012:587479

    Article  Google Scholar 

  21. Ferretti G, Bacchetti T, Johnston TP et al (2018) Lipoprotein(a): a missing culprit in the management of athero-thrombosis? J Cell Physiol 233:2966–2981

    Article  Google Scholar 

  22. Fiorini R, Valentino M, Wang S et al (1987) Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles. Biochemistry 26:3864–3870

    Article  Google Scholar 

  23. Fiorini R, Valentino M, Glaser M et al (1988) Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene reveal the effect of cholesterol on the microheterogeneity of erythrocyte membrane. Biochim Biophys Acta 939:485–492

    Article  Google Scholar 

  24. Fiorini R, Curatola G, Bertoli E et al (1990) Changes of fluorescence anisotropy in plasma membrane of human polymorphonuclear leukocytes during the respiratory burst phenomenon. FEBS Lett 273:122–126

    Article  Google Scholar 

  25. Fiorini R, Bertoli E, Falcioni G et al (1994) Alterations in membrane fluidity of polymorphonuclear leukocytes from children with Trisomy 21. Patho-physiology 1:63–67

    Google Scholar 

  26. Fiorini R, Littarru GP, Coppa GV, Kantar A (2000) Plasma membrane polarity of polymorphonuclear leukocytes from children with primary ciliary dyskinesia. Eur J Clin Invest 30:519–525

    Google Scholar 

  27. Fiorini R, Ragni L, Ambrosi S et al (2008) Fluorescence studies of the interactions of ubiquinol-10 with liposomes. Photochem Photobiol 84:209–214

    Google Scholar 

  28. Gregoriadis G, Leathwood PD, Ryman BE (1971) Enzyme entrapment in liposomes. FEBS Lett 14:95–99

    Article  Google Scholar 

  29. Heap B, Gregoriadis G (2011) Alec Douglas Bangham. 10 November 1921–9 March 2010. Biogr Mems Fell R Soc 57:25–43

    Google Scholar 

  30. Horejsi V, Cebecauer M, Cerny J et al (1998) Signal transduction in leucocytes via GPI-anchored proteins: an experimental artefact or an aspect of immunoreceptor function? Immunol Lett 63:63–73

    Article  Google Scholar 

  31. Ipsen JH, Karlström G, Mouritsen OG et al (1987) Phase equilibria in the phosphatidylcholine–cholesterol system. Biochim Biophys Acta 905:162–172

    Article  Google Scholar 

  32. Jakubowski H (2002) Homocysteine is a protein amino acid in humans: implications for homocysteine-linked disease. J Biol Chem 277:30425–30428

    Article  Google Scholar 

  33. Jakubowski H (2006) Pathophysiological consequences of homocysteine excess. J Nutr 136:1741S–1749S

    Article  Google Scholar 

  34. Kantar A, Giorgi PL, Curatola G, Fiorini R (1992) Interaction between PAF and human platelet membranes: a fluorescence study. Mediators Inflamm 1:127–131

    Article  Google Scholar 

  35. Kantar A, Giorgi PL, Curatola G, Fiorini R (1992) Alterations in erythrocyte membrane fluidity in children with trisomy 21: a fluorescence study. Biol Cell 75:135–138

    Article  Google Scholar 

  36. Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5:213–230

    Article  Google Scholar 

  37. Lacko AG, Sabnis NA, Nagarajan B, McConathy WJ (2015) HDL as a drug and nucleic acid delivery vehicle. Front Pharmacol 6:247

    Article  Google Scholar 

  38. Lenaz G, Curatola G, Fiorini R et al (1983) Membrane fluidity and its role in the regulation of cellular processes. In: Mirand EA, Hutchinson WB, Mihich E (eds) Biology of cancer, vol 2. Alan R. Liss, New York, pp 25–34

    Google Scholar 

  39. Madni A, Sarfraz M, Rehman M et al (2014) Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci 17(3):401–426

    Article  Google Scholar 

  40. McNamara JR, Warnick GR, Cooper GR (2006) A brief history of lipid and lipoprotein measurements and their contribution to clinical chemistry. Clin Chim Acta 369:158–167

    Article  Google Scholar 

  41. Negre-Salvayre A, Dousset N, Ferretti G et al (2006) Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic Biol Med 41:1031–1040

    Article  Google Scholar 

  42. Nègre-Salvayre A, Augé N, Camaré C et al (2017) Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 106:118–133

    Article  Google Scholar 

  43. Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838:1451–1466

    Article  Google Scholar 

  44. Offidani AM, Ferretti G, Taus M (1994) Lipoprotein peroxidation in adult psoriatic patient. Acta Derm Venereol Suppl 186:38–40

    Google Scholar 

  45. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  Google Scholar 

  46. Pralle A, Keller P, Florin EL et al (2000) Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1007

    Article  Google Scholar 

  47. Razani B, Lisanti MP (2001) Caveolin-deficient mice: insights into caveolar function human disease. J Clin Invest 108:1553–1561

    Google Scholar 

  48. Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  Google Scholar 

  49. Singer SJ, Nicolson GL (1972) the fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  Google Scholar 

  50. Soriful I, Castellucci C, Fiorini R et al (2018) Omega-3 fatty acids modulate the lipid profile, membrane architecture, and gene expression of leiomyoma cells. J Cell Physiol 233:7143–7156

    Article  Google Scholar 

  51. Valentino M, Fiorini R, Curatola G, Governa M (1982) Changes of membrane fluidity in erythrocytes of lead-exposed workers. Inter Arch Occup Environ Health 51(105–112):52

    Google Scholar 

  52. Winklhofer-Roob BM, Faustmann G, Roob JM (2017) Low-density lipoprotein oxidation biomarkers in human health and disease and effects of bioactive compounds. Free Radic Biol Med 111:38–86

    Article  Google Scholar 

  53. Zerrad-Saadi A, Therond P, Chantepie S et al (2009) HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler Thromb Vasc Biol 29:2169–2175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianna Ferretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferretti, G., Bacchetti, T., Fiorini, R. (2020). Multiple Roles of Membrane Lipids: Implications for Health and Disease. In: Longhi, S., et al. The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-33832-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33832-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33831-2

  • Online ISBN: 978-3-030-33832-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics