Skip to main content

Evaluation of the Microcirculation in Critically Ill Patients

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

The first goal of therapies in critically ill patients is to improve tissue perfusion and oxygenation. Hemodynamic monitoring has long been limited to measurements of cardiac output and global oxygen delivery. The clinical introduction of hand-held vital microscopes in the late 1990s enabled the real-time, non-invasive, bedside observation of blood flow in the microcirculation (vessels with diameter <100 µm), i.e. the real site of oxygen and nutrient exchange between blood and cells. Microcirculatory alterations have been described during sepsis and shock states and were associated with mortality. These can occur independently of systemic hemodynamic alterations. Sublingual videomicroscopy allowed evaluating the microvascular response to resuscitation procedures, including oxygen therapy, fluids, blood transfusions, vasopressors. Future research directions should be aimed to integrate microcirculatory monitoring with standard hemodynamic measurements and verify the utility of microcirculation as a therapeutic target. Continuous technological developments are imperative to facilitate the introduction of sublingual videomicroscopy in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donati A, Domizi R, Damiani E et al (2013) From macrohemodynamic to the microcirculation. Crit Care Res Pract 2013:892710

    Google Scholar 

  2. Kara A, Akin S, Ince C (2016) Monitoring microcirculation in critical illness. Curr Opin Crit Care 22:444–452

    Article  Google Scholar 

  3. Woodcock TE, Woodcock TM (2012) Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaest 108:384–394

    Article  Google Scholar 

  4. Moore JPR, Dyson A, Singer M et al (2015) Microcirculatory dysfunction and resuscitation: why, when, and how. Br J Anaesth 115:366–375

    Article  Google Scholar 

  5. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–S19

    Article  Google Scholar 

  6. Marechal X, Favory R, Joulin O et al (2008) Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29:572–576

    Google Scholar 

  7. Ince C (2015) Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 19:S8

    Article  Google Scholar 

  8. Donati A, Tibboel D, Ince C (2013) Towards integrative physiological monitoring of the critically ill: from cardiovascular to microcirculatory and cellular function monitoring at the bedside. Crit Care 17(Suppl. 1):S5

    Article  Google Scholar 

  9. De Backer D, Ospina-Tascon G, Salgado D et al (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36:1813–1825

    Article  Google Scholar 

  10. Vincent JL, Quintairos E, Silva A, Couto A Jr et al (2016) The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 20:257

    Article  Google Scholar 

  11. Wittayachamnankul B, Chentanakij B, Sruamsiri K et al (2016) The role of central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment. J Crit Care 36:223–229

    Article  Google Scholar 

  12. Levy B, Gawalkiewicz P, Vallet B et al (2003) Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med 31:474–480

    Article  Google Scholar 

  13. Donati A, Battisti D, Recchioni A et al (1998) Predictive value of interleukin 6 (IL-6), interleukin 8 (IL-8) and gastric intramucosal pH (pH-i) in major abdominal surgery. Intensive Care Med 24:329–335

    Article  Google Scholar 

  14. Mathura KR, Vollebregt KC, Boer K et al (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91:74–78

    Article  Google Scholar 

  15. Goedhart PT, Khalilzada M, Bezemer R et al (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15:15101–15114

    Article  Google Scholar 

  16. Aykut G, Veenstra G, Scorcella C et al (2015) Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp 3:4

    Article  Google Scholar 

  17. De Backer D, Hollenberg S, Boerma EC et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101

    Article  Google Scholar 

  18. Ince C, Boerma EC, Cecconi M et al (2018) Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 44:281–299

    Article  Google Scholar 

  19. Carsetti A, Hollman DA, Pierantozzi S et al (2017) Ability and efficiency of an automatic analysis software to measure microvascular parameters. J Clin Monit Comput 31:669–676

    Article  Google Scholar 

  20. Crookes BA, Cohn SM, Bloch S et al (2005) Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma 58:806–813

    Article  Google Scholar 

  21. Gómez H, Mesquida J, Simon P et al (2009) Characterization of tissue oxygen saturation and the vascular occlusion test: influence of measurement sites, probe sizes and deflation thresholds. Crit Care 13(Suppl 5):S3

    Article  Google Scholar 

  22. Donati A, Damiani E, Domizi R et al (2016) Near-infrared spectroscopy for assessing tissue oxygenation and microvascular reactivity in critically ill patients: a prospective observational study. Crit Care 20:311

    Article  Google Scholar 

  23. De Backer D, Creuter J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  Google Scholar 

  24. Edul VS, Enrico C, Laviolle B et al (2012) Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 40:1443–1448

    Article  Google Scholar 

  25. Spanos A, Jhanji S, Vivian-Smith A et al (2010) Early microvascular changes in sepsis and severe sepsis. Shock 33:387–391

    Article  Google Scholar 

  26. Trzeciak S, Dellinger RP, Parrillo JE et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98

    Article  Google Scholar 

  27. Sakr Y, Dubois MJ, De Backer D et al (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  Google Scholar 

  28. Trzeciak S, McCoy JV, Dellinger RP et al (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 hours in patients with sepsis. Intensive Care Med 34:2210–2217

    Article  Google Scholar 

  29. Hernandez G, Boerma EC, Dubin A et al (2013) Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care 28:538.e9–538.e14

    Article  Google Scholar 

  30. De Backer D, Donadello K, Sakr Y et al (2013) Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 41:791–799

    Article  Google Scholar 

  31. Edul VS, Ince C, Vazquez AR et al (2016) Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Ann Am Thorac Soc 13:240–247

    Article  Google Scholar 

  32. Donati A, Damiani E, Domizi R et al (2013) Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microv Res 90:86–89

    Article  Google Scholar 

  33. Fabian-Jessing BJ, Massey MJ, Filbin MR et al (2018) In vivo quantification of rolling and adhered leukocytes in human sepsis. Crit Care 22:240

    Article  Google Scholar 

  34. Neto AS, Pereira VG, Manetta JA et al (2014) Association between static and dynamic thenar near-infrared spectroscopy and mortality in patients with sepsis: a systematic review and meta-analysis. J Trauma Acute Care Surg 76:226–233

    Article  Google Scholar 

  35. Shapiro NI, Arnold R, Sherwin R et al (2011) The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care 15:R223

    Article  Google Scholar 

  36. Vellinga NAR, Boerma EC, Koopmans M et al (2012) Study design of the Microcirculatory Shock Occurrence in Acutely Ill Patients (microSOAP): an international multicenter observational study of sublingual microcirculatory alterations in intensive care patients. Crit Care Res Pract 2012:121752

    Google Scholar 

  37. Vellinga NA, Boerma EC, Koopmans M et al (2015) International study on microcirculatory shock occurrence in acutely ill patients. Crit Care Med 43:48–56

    Article  Google Scholar 

  38. Vellinga NA, Boerma EC, Koopmans M et al (2017) Mildly elevated lactate levels are associated with microcirculatory flow abnormalities and increased mortality: a microSOAP post hoc analysis. Crit Care 21:255

    Article  Google Scholar 

  39. Scorcella C, Damiani E, Domizi R et al (2018) MicroDAIMON study: microcirculatory DAIly MONitoring in critically ill patients: a prospective observational study. Ann Intensive Care 8:64

    Article  Google Scholar 

  40. Hutchings SD, Naumann DN, Watts S et al (2016) Microcirculatory perfusion shows wide inter-individual variation and is important in determining shock reversal during resuscitation in a porcine experimental model of complex traumatic hemorrhagic shock. Intensive Care Med Exp 4:17

    Article  Google Scholar 

  41. Tachon G, Harrois A, Tanaka S et al (2014) Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med 42:1433–1441

    Article  Google Scholar 

  42. Domizi R, Damiani E, Scorcella C et al (2019) Association between sublingual microcirculation, tissue perfusion and organ failure in major trauma: A subgroup analysis of a prospective observational study. PLOS ONE 14(3):e0213085

    Google Scholar 

  43. Hutchings SD, Naumann DN, Hopkins P et al (2018) microcirculatory impairment is associated with multiple organ dysfunction following traumatic hemorrhagic shock: The MICROSHOCK Study. Crit Care Med 46:e889–e896

    Article  Google Scholar 

  44. De Backer D, Creuter J, Dubois MJ et al (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99

    Article  Google Scholar 

  45. Donadello K, Favory R, Salgado-Ribeiro D et al (2011) Sublingual and muscular microcirculatory alterations after cardiac arrest: a pilot study. Resuscitation 82:690–695

    Article  Google Scholar 

  46. Omar YG, Massey M, Andersen LW et al (2013) Sublingual microcirculation is impaired in post-cardiac arrest patients. Resuscitation 84:1717–1722

    Article  Google Scholar 

  47. Kara A, Akin S, dos Reis Miranda D et al (2016) Microcirculatory assessment of patients under VA-ECMO. Crit Care 20:344

    Article  Google Scholar 

  48. Yeh YC, Lee CT, Wang CH et al (2018) Investigation of microcirculation in patients with venoarterial extracorporeal membrane oxygenation life support. Crit Care 22:200

    Article  Google Scholar 

  49. Akin S, dos Reis Miranda D, Caliskan K et al (2017) Functional evaluation of sublingual microcirculation indicates successful weaning from VA-ECMO in cardiogenic shock. Crit Care 21:265

    Article  Google Scholar 

  50. Donati A, Romanelli M, Botticelli L et al (2009) Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by near-infrared spectroscopy. Crit Care 13(Suppl 5):S12

    Article  Google Scholar 

  51. Donati A, Damiani E, Botticelli L et al (2013) The aPC treatment improves microcirculation in severe sepsis/septic shock syndrome. BMC Anesthesiol 13:25

    Article  Google Scholar 

  52. Ospina-Tascon G, Neves AP, Occhipinti G et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36:949–955

    Article  Google Scholar 

  53. Pottecher J, Deruddre S, Teboul JL et al (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 36:1867–1874

    Article  Google Scholar 

  54. Pranskunas A, Koopmans M, Koetsier PM et al (2013) Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med 39:612–619

    Article  Google Scholar 

  55. Vellinga NAR, Ince C, Boerma EC (2013) Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol 13:17

    Article  Google Scholar 

  56. Veenstra G, Ince C, Barendrecht BW et al (2018) Differences in capillary recruitment between cardiac surgery and septic patients after fluid resuscitation. Microvasc Res. https://doi.org/10.1016/j.mvr.2018.11.006

    Article  Google Scholar 

  57. Dubin A, Pozo MO, Casabella CA et al (2010) Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. J Crit Care 25:659.e1–659.e8

    Article  Google Scholar 

  58. Orbegozo D, Su F, Santacruz C et al (2016) Effects of different crystalloid solutions on hemodynamics, peripheral perfusion, and the microcirculation in experimental abdominal sepsis. Anesthesiology 125:744–754

    Article  Google Scholar 

  59. Damiani E, Ince C, Orlando F et al (2016) Effects of the infusion of 4% or 20% human serum albumin on the skeletal muscle microcirculation in endotoxemic rats. PLoS ONE 11:e0151005

    Article  Google Scholar 

  60. Potter EK, Hodgson L, Creagh-Brown B et al (2018) Manipulating the microcirculation in sepsis—the impact of vasoactive medications on microcirculatory blood flow. A systematic review. Shock. https://doi.org/10.1097/shk.0000000000001239

  61. Thooft A, Favory R, Ribeiro Salgado D et al (2011) Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care 15:R222

    Article  Google Scholar 

  62. Dubin A, Pozo MO, Casabella CA et al (2009) Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 13:R92

    Article  Google Scholar 

  63. Xu JY, Ma SQ, Pan C et al (2015) A high mean arterial pressure target is associated with improved microcirculation in septic shock patients with previous hypertension: a prospective open label study. Crit Care 19:130

    Article  Google Scholar 

  64. Morelli A, Donati A, Ertmer C et al (2011) Short-term effects of terlipressin bolus infusion on sublingual microcirculatory blood flow during septic shock. Intensive Care Med 37:963–969

    Article  Google Scholar 

  65. Morelli A, Donati A, Ertmer C et al (2011) Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Crit Care 15:R217

    Article  Google Scholar 

  66. De Backer D, Creuter J, Dubois MJ et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408

    Article  Google Scholar 

  67. Enrico C, Kanoore Edul VS, Vazquez AR et al (2012) Systemic and microcirculatory effects of dobutamine in patients with septic shock. J Crit Care 27:630–638

    Article  Google Scholar 

  68. Hernandez G, Bruhn A, Luengo C et al (2013) Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med 39:1435–1443

    Article  Google Scholar 

  69. Morelli A, Donati A, Ertmer C et al (2010) Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Crit Care 14:R232

    Article  Google Scholar 

  70. Liu P, Wu Q, Tang Y et al (2018) The influence of esmolol on septic shock and sepsis: a meta-analysis of randomized controlled studies. Am J Emerg Med 36:470–474

    Article  Google Scholar 

  71. Morelli A, Donati A, Ertmer C et al (2013) Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study. Crit Care Med 41:2162–2168

    Article  Google Scholar 

  72. Nielsen ND, Martin-Loeches I, Wentowski C (2017) The effects of red blood cell transfusion on tissue oxygenation and the microcirculation in the intensive care unit: a systematic review. Transfus Med Rev 31:205–222

    Article  Google Scholar 

  73. Sakr Y, Chierego M, Piagnerelli M et al (2007) Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med 35:1639–1644

    Article  Google Scholar 

  74. Donati A, Damiani E, Luchetti MM et al (2014) Microcirculatory effects of the transfusion of leukodepleted or non-leukodepleted red blood cells in patients with sepsis: a pilot study. Crit Care 18:R33

    Article  Google Scholar 

  75. Damiani E, Adrario E, Luchetti MM et al (2015) Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS ONE 10:e0122655

    Article  Google Scholar 

  76. Damiani E, Adrario E, Girardis M et al (2014) Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care 18:711

    Article  Google Scholar 

  77. Damiani E, Donati A, Girardis M (2018) Oxygen in the critically ill: friend or foe? Curr Opin Anaesthesiol 31:129–135

    Article  Google Scholar 

  78. Girardis M, Busani S, Damiani E et al (2016) Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the Oxygen-ICU Randomized Clinical Trial. JAMA 316:1583–1589

    Article  Google Scholar 

  79. Smit B, Smulders YM, Eringa EC et al (2018) Effects of hyperoxia on vascular tone in animal models: systematic review and meta-analysis. Crit Care 22:189

    Article  Google Scholar 

  80. Orbegozo Cortés D, Puflea F, Donadello K et al (2015) Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res 98:23–28

    Article  Google Scholar 

  81. Smit B, Smulders YM, Eringa EC et al (2018) Hyperoxia does not affect oxygen delivery in healthy volunteers while causing a decrease in sublingual perfusion. Microcirculation. https://doi.org/10.1111/micc.12433

    Article  Google Scholar 

  82. Donati A, Damiani E, Zuccari S et al (2017) Effects of short-term hyperoxia on erythropoietin levels and microcirculation in critically Ill patients: a prospective observational pilot study. BMC Anesthesiol 17:49

    Article  Google Scholar 

  83. He X, Su F, Xie K et al (2017) Should hyperoxia be avoided during sepsis? An experimental study in ovine peritonitis. Crit Care Med 45:e1060–e1067

    Article  Google Scholar 

  84. Sallisalmi M, Oksala N, Pettilä V et al (2012) Evaluation of sublingual microcirculatory blood flow in the critically ill. Acta Anaesthesiol Scand 56:298–306

    Article  Google Scholar 

  85. Damiani E, Ince C, Scorcella C et al (2017) Impact of microcirculatory video quality on the evaluation of sublingual microcirculation in critically ill patients. J Clin Monit Comput 31:981–988

    Article  Google Scholar 

  86. Massey MJ, Larochelle E, Najarro G et al (2013) The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. J Crit Care 28:913–917

    Article  Google Scholar 

  87. Arnold RC, Parrillo JE, Dellinger RP et al (2009) Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med 35:1761–1766

    Article  Google Scholar 

  88. Lima A, Lòpez A, van Genderen ME et al (2015) Interrater reliability and diagnostic performance of subjective evaluation of sublingual microcirculation images by physicians and nurses: a multicenter observational study. Shock 44:239–244

    Article  Google Scholar 

  89. Tanaka S, Harrois A, Nicolai C et al (2015) Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care 19:388

    Article  Google Scholar 

  90. Naumann DN, Mellis C, Husheer SLG et al (2016) Real-time point of care microcirculatory assessment of shock: design, rationale and application of the point of care microcirculation (POEM) tool. Crit Care 20:310

    Article  Google Scholar 

  91. Sardinha J, MacKinnon S, Lehmann C (2018) Rapid clinical assessment of the sublingual microcirculation—visual scoring using microVAS in comparison to standard semi-automated analysis. Clin Hemorheol Microcirc. https://doi.org/10.3233/CH-180427

    Article  Google Scholar 

  92. Sharawy N, Mukhtar A, Islam S et al (2017) Preliminary clinical evaluation of automated analysis of the sublingual microcirculation in the assessment of patients with septic shock: comparison of automated versus semi-automated software. Clin Hemorheol Microcirc 67:489–498

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abele Donati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damiani, E., Domizi, R., Scorcella, C., Carsetti, A., Donati, A. (2020). Evaluation of the Microcirculation in Critically Ill Patients. In: Longhi, S., et al. The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-33832-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33832-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33831-2

  • Online ISBN: 978-3-030-33832-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics