Skip to main content

Introduction and Overview

  • Chapter
  • First Online:
Iron Geochemistry: An Isotopic Perspective

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

  • 1286 Accesses

Abstract

Iron has long been of great interest to geochemists given its high abundance and sensitivity to redox changes. Our goal in this chapter is to acquaint the reader with key concepts of Fe geochemistry and isotope geochemistry as a foundation for later chapters. Our short review of Fe geochemistry in Sect. 1.1 focuses on redox changes because these are responsible for some of the largest Fe isotope variations found in natural samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller LH, McLaughlin DB (1965) Stellar structure. vol 8. The University of Chicago Press, Stars and Stellar Systems

    Google Scholar 

  • Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci Rev 123:53–86. https://doi.org/10.1016/j.earscirev.2013.02.008

    Article  Google Scholar 

  • Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195(1–4):87–117

    Article  Google Scholar 

  • Behrens H, Gaillard F (2006) Geochemical aspects of melts: volatiles and redox behavior. Elements 2:275–280

    Article  Google Scholar 

  • Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311(3):183–210. https://doi.org/10.2475/03.2011.01

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725. https://doi.org/10.1016/j.gca.2004.07.026

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Phys Chem 13:261–267

    Article  Google Scholar 

  • Blake R, Johnson DB (2000) Phylogenetic and biochemical diversity among acidophilic bacteria that respire on iron. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, D.C

    Google Scholar 

  • Blanchard M, Balan E, Schauble EA (2017) Equilibrium fractionation of non-traditional isotopes: a molecular modeling perspective. Rev Mineral Geochem 82(1):27–63

    Article  Google Scholar 

  • Botcharnikov RE, Koepke J, Holtz F, McCammon C, Wilke M (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69(21):5071–5085. https://doi.org/10.1016/j.gca.2005.04.023

    Article  Google Scholar 

  • Brookins DG (1988) Eh-pH Diagrams for geochemistry. Springer

    Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (2005) Aquatic geomicrobiology, vol 48. Academic Press

    Google Scholar 

  • Canfield DE, Thamdrup B (2009) Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7(4):385–392. https://doi.org/10.1111/j.1472-4669.2009.00214.x

    Article  Google Scholar 

  • Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883

    Article  Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicis magmas: a reflection of their source regions? Contrib Miner Petrol 106:129–141

    Article  Google Scholar 

  • Chou I-M, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277:1296–1314

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses. Wiley

    Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution. Oxford University Press, USA

    Google Scholar 

  • Dauphas N, van Zuilen M, Wadhwa M, Davis AM, Marty B, Janney PE (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 306:2077–2080

    Article  Google Scholar 

  • Fewell MP (1995) The atomic nuclide with the highest mean binding energy. Am J Phys 63(7):653–658

    Article  Google Scholar 

  • Gaillard F, Pichavant M, Scaillet B (2003) Experimental determination of activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochim Cosmochim Acta 67(22):4389–4409. https://doi.org/10.1016/s0016-7037(03)00376-4

    Article  Google Scholar 

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the chemical society on March 17th 1937. J Chem Soc (Resumed) (0):655–673. https://doi.org/10.1039/jr9370000655

    Article  Google Scholar 

  • Handler RM, Beard BL, Johnson CM, Scherer MM (2009) Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environ Sci Technol 43:1102–1107

    Article  Google Scholar 

  • Hansel CM, Benner SG, Fendorf S (2005) Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ Sci Technol 39:7147–7153

    Article  Google Scholar 

  • Hoefs J (2018) Stable isotope geochemistry. Springer

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Johnson CM, Beard BL, Albarède F (2004a) Chapter 1. Overview and general concepts. In: Rosso JJ (ed) Geochemistry of non-tradtional stable isotopes. Reviews in mineralogy and geochemistry

    Google Scholar 

  • Johnson CM, Beard BL, Albarède F (2004b) Geochemistry of non-traditional stable isotopes, vol 55. Reviews in mineralogy and geochemistry

    Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607

    Article  Google Scholar 

  • Konhauser KO (2006) Introduction to geomicrobiology. Wiley-Blackwell

    Google Scholar 

  • Konhauser KO, Planavsky NJ, Hardisty DS, Robbins LJ, Warchola TJ, Haugaard R, Lalonde SV, Partin CA, Oonk PBH, Tsikos H, Lyons TW, Bekker A, Johnson CM (2017) Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci Rev 172:140–177. https://doi.org/10.1016/j.earscirev.2017.06.012

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108:82–92

    Article  Google Scholar 

  • Lee C-T (2016) Geochemical classification of elements. In: Encyclopedia of engineering geology. Encyclopedia of earth sciences series, pp 1–5. https://doi.org/10.1007/978-3-319-39193-9_255-1

    Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315. https://doi.org/10.1038/nature13068

    Article  Google Scholar 

  • Markl G, Marks MAW, Frost BR (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. J Petrol 51(9):1831–1847. https://doi.org/10.1093/petrology/egq040

    Article  Google Scholar 

  • Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801

    Article  Google Scholar 

  • O’Neil JR (1986a) Appendix: terminology and standards In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotopes in high temperature geological processes, vol 16. Reviews in mineralogy, pp 561–570

    Google Scholar 

  • O’Neil JR (1986b) Theoretical and experimental aspects of isotopic fractionation. In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotopes in high temperature geological processes, vol 16. Reviews in mineralogy, pp 1–40

    Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Okafor CD, Bowman JC, Hud NV, Glass JB, Williams LD (2018) Folding and catalysis near life’s origin: support for Fe2+ as a dominant divalent cation. In: Prebiotic chemistry and chemical evolution of nucleic acids. Nucleic acids and molecular biology, pp 227–243. https://doi.org/10.1007/978-3-319-93584-3_8

    Chapter  Google Scholar 

  • Palme H, Lodders K, Jones A (2014) Solar system abundances of the elements. In: Treatise on geochemistry, pp 15–36. https://doi.org/10.1016/b978-0-08-095975-7.00118-2

    Chapter  Google Scholar 

  • Rayleigh L (1902) On the distillation of binary mixtures. Philos Mag Ser 6(4):521–537

    Article  Google Scholar 

  • Righter K, Ghiorso MS (2012) Redox systematics of a magma ocean with variable pressure-temperature gradients and composition. Proc Natl Acad Sci U S A 109(30):11955–11960. https://doi.org/10.1073/pnas.1202754109

    Article  Google Scholar 

  • Rustad JR, Casey WH, Yin Q-Z, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of Mg2+ (aq), Ca2 + (aq), and Fe2+ (aq) with carbonate minerals. Geochim Cosmochim Acta 74(22):6301–6323. https://doi.org/10.1016/j.gca.2010.08.018

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes, vol 56. Reviews in mineralogy and geochemistry

    Google Scholar 

  • Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant Soil 130:1–25

    Article  Google Scholar 

  • Teng FZ, Dauphas N, Watkins JM (2017) Non-traditional stable isotopes: retrospective and prospective. Rev Mineral Geochem 82(1):1–26

    Article  Google Scholar 

  • Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58(23):5115–5129

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (Lond):562–581

    Google Scholar 

  • Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67:4231–4250

    Article  Google Scholar 

  • Yang L, Steefel CI, Marcus MA, Bargar JR (2010) Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions. Environ Sci Technol 44:5469–5475

    Article  Google Scholar 

  • Zhu X-K, O’Nions RK, Guo Y, Reynolds BC (2000) Secular variation of iron isotopes in North Atlantic deep water. Science 287:2000–2002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark Johnson .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, C., Beard, B., Weyer, S. (2020). Introduction and Overview. In: Iron Geochemistry: An Isotopic Perspective. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-33828-2_1

Download citation

Publish with us

Policies and ethics