Skip to main content

Application of Genetic Algorithms for Designing Micro-Hydro Power Plants in Rural Isolated Areas—A Case Study in San Miguelito, Honduras

  • Chapter
  • First Online:
Nature Inspired Computing for Data Science

Part of the book series: Studies in Computational Intelligence ((SCI,volume 871))

  • 630 Accesses

Abstract

The use of Micro-Hydro Power Plants (MHPP) has established itself as a fundamental tool to address the problem of energy poverty in rural isolated areas, having become the most used renewable energy source not just in this field but also in big scale power generation. Although the technology used has made important advances in the last few decades, it has been generally applied to big scale hydro-power systems. This fact has relegated the use of isolated MHPPs to the background. In this context, there is still a vast area of improvement in the development of optimization strategies for these projects, which in practice remains limited to the use of thumb rules. It results in a sub-optimal use of the available resources. This work proposes the use of a Genetic Algorithm (GA) to assist the design of MHPP, finding the most suitable location of the different elements of a MHPP to achieve the most efficient use of the resources. For this, a detailed model of the plant is first developed, followed by an optimization problem for the optimal design, which is formulated by considering the real terrain topographic data. The problem is presented in both single (to minimize the cost) and multi-objective (to minimize cost while maximizing the generated power) mode, providing a deep analysis of the potentiality of using GAs for designing MHPP in rural isolated areas. To validate the proposed approach, it is applied to a set of topographic data from a real scenario in Honduras. The achieved results are compared with a baseline integer-variable algorithm and other meta-heuristic algorithms, demonstrating a noticeable improvement in the solution in terms of cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available in [58]. The simulator has been developed using Python and DEAP [59].

References

  1. Nejat, Payam, Fatemeh Jomehzadeh, Mohammad Mahdi Taheri, Mohammad Gohari, and Muhd Zaimi Abd Majid. 2015. A global review of energy consumption, co2 emissions and policy in the residential sector (with an overview of the top ten co2 emitting countries). Renewable and Sustainable Energy Reviews 43: 843–862.

    Article  Google Scholar 

  2. International Energy Agency. 2017. WEO-2017 Special Report: Energy Access Outlook.

    Google Scholar 

  3. Pereira, Marcio Giannini, José Antonio Sena, Marcos Aurélio Vasconcelos Freitas, and Neilton Fidelis Da Silva. 2011. Evaluation of the impact of access to electricity: A comparative analysis of South Africa, China, India and Brazil. Renewable and Sustainable Energy Reviews 15 (3): 1427–1441.

    Article  Google Scholar 

  4. OECD. 2016. Linking renewable energy to rural development, OECD green growth studies. OECD Publishing.

    Google Scholar 

  5. Krewitt, Wolfram, Sonja Simon, Wina Graus, Sven Teskec, Arthouros Zervos, and Oliver Schafer. 2008. The 2 degrees c scenario-a sustainable world energy perspective (vol 35, pg 4969, 2007). Energy Policy 36 (1): 494–494.

    Article  Google Scholar 

  6. Luderer, Gunnar, Volker Krey, Katherine Calvin, James Merrick, Silvana Mima, Robert Pietzcker, Jasper Van Vliet, and Kenichi Wada. 2014. The role of renewable energy in climate stabilization: Results from the EMF27 scenarios. Climatic Change 123 (3–4): 427–441.

    Article  Google Scholar 

  7. United Nations Environment Programme. 2009. Renewables global status report: 2009 update. Internet. http://www.unep.fr/shared/docs/publications/RE_GSR_2009_Update.pdf.

  8. Kanase-Patil, A.B., R.P. Saini, and M.P. Sharma. 2010. Integrated renewable energy systems for off grid rural electrification of remote area. Renewable Energy 35 (6): 1342–1349.

    Article  Google Scholar 

  9. Bugaje, I.M. 2006. Renewable energy for sustainable development in Africa: A review. Renewable and Sustainable Energy Reviews 10 (6): 603–612.

    Article  Google Scholar 

  10. Sahoo, Sarat Kumar. 2016. Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review. Renewable and Sustainable Energy Reviews 59: 927–939.

    Article  Google Scholar 

  11. Saheb-Koussa, D., Mourad Haddadi, and Maiouf Belhamel. 2009. Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria. Applied Energy 86 (7–8): 1024–1030.

    Article  Google Scholar 

  12. Mohammed, Y.S., A.S. Mokhtar, Naomi Bashir, and R. Saidur. 2013. An overview of agricultural biomass for decentralized rural energy in Ghana. Renewable and Sustainable Energy Reviews 20:15–25.

    Article  Google Scholar 

  13. Sachdev, Hira Singh, Ashok Kumar Akella, and Niranjan Kumar. 2015. Analysis and evaluation of small hydropower plants: A bibliographical survey. Renewable and Sustainable Energy Reviews 51: 1013–1022.

    Article  Google Scholar 

  14. Kaldellis, J., and K. Kavadias. 2000. Laboratory applications of renewable energy sources. Athens: Stamoulis.

    Google Scholar 

  15. ESMAP. 2017. Technical and economic assessment of off-grid. Technical report, 12.

    Google Scholar 

  16. Muhammad Indra, al Irsyad, Anthony Halog, and Rabindra Nepal. 2019. Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors. Renewable Energy 130: 536–546.

    Article  Google Scholar 

  17. Jawahar, C.P., and Prawin Angel Michael. 2017. A review on turbines for micro hydro power plant. Renewable and Sustainable Energy Reviews 72: 882–887.

    Article  Google Scholar 

  18. Khurana, S., and Anoop Kumar. 2011. Small hydro power, a review. International Journal of Thermal Technologies 1(1): 107–110.

    Google Scholar 

  19. Mandelli, Stefano, Jacopo Barbieri, Riccardo Mereu, and Emanuela Colombo. 2016. Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews 58: 1621–1646.

    Article  Google Scholar 

  20. Carravetta A., Derakhshan Houreh S., and Ramos H.M. 2018. Pumps as turbines. Springer tracts in mechanical engineering. Springer.

    Google Scholar 

  21. Cobb, Bryan R., and Kendra V. Sharp. 2013. Impulse (turgo and pelton) turbine performance characteristics and their impact on pico-hydro installations. Renewable Energy 50: 959–964.

    Article  Google Scholar 

  22. Sangal, Saurabh, Arpit Garg, and Dinesh Kumar. 2013. Review of optimal selection of turbines for hydroelectric projects. International Journal of Emerging Technology and Advance Engineering 3: 424–430.

    Google Scholar 

  23. Herschy, Reginald W. 2014. Streamflow Measurement, vol. 3.

    Book  Google Scholar 

  24. Thake, J. 2000. Micro-hydro Pelton Turbine Manual: Design, manufacture and installation for small-scale hydropower.

    Google Scholar 

  25. Mishra, Sachin, S.K. Singal, and D.K. Khatod. 2011. Optimal installation of small hydropower plant. A review. Renewable and Sustainable Energy Reviews 15 (8): 3862–3869.

    Article  Google Scholar 

  26. Elbatran, A.H., O.B. Yaakob, Yasser M. Ahmed, and H.M. Shabara. 2015. Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renewable and Sustainable Energy Reviews 43: 40–50.

    Article  Google Scholar 

  27. Haddad, Omid Bozorg, Mahdi Moradi-Jalal, and Miguel A. Marino. 2011. Design–operation optimisation of run-of-river power plants. In Proceedings of the institution of civil engineers-water management, vol. 164, 463–475. Thomas Telford Ltd.

    Google Scholar 

  28. Anagnostopoulos, John S., and Dimitris E. Papantonis. 2007. Optimal sizing of a run-of-river small hydropower plant. Energy Conversion and Management 48 (10): 2663–2670.

    Article  Google Scholar 

  29. Alexander, K.V., and E.P. Giddens. 2008. Optimum penstocks for low head microhydro schemes. Renewable Energy 33 (3): 507–519.

    Article  Google Scholar 

  30. Tapia, A., P. Millán, and F. Gómez-Estern. 2018. Integer programming to optimize micro-hydro power plants for generic river profiles. Renewable Energy 126: 905–914.

    Article  Google Scholar 

  31. Gingold, P.R. 1981. The optimum size of small run-of-river plants. International Water Power and Dam Construction 33 (11).

    Google Scholar 

  32. Marliansyah, Romy, Dwini Normayulisa Putri, Andy Khootama, and Heri Hermansyah. 2018. Optimization potential analysis of micro-hydro power plant (MHPP) from river with low head. Energy Procedia 153: 74–79.

    Article  Google Scholar 

  33. Iqbal, M., M. Azam, M. Naeem, A.S. Khwaja, and A. Anpalagan. 2014. Optimization classification, algorithms and tools for renewable energy: A review. Renewable and Sustainable Energy Reviews 39: 640–654.

    Article  Google Scholar 

  34. Banos, Raul, Francisco Manzano-Agugliaro, F.G. Montoya, Consolacion Gil, Alfredo Alcayde, and Julio Gómez. 2011. Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews 15 (4): 1753–1766.

    Article  Google Scholar 

  35. Singal, S.K., R.P. Saini, and C.S. Raghuvanshi. 2010. Analysis for cost estimation of low head run-of-river small hydropower schemes. Energy for Sustainable Development 14 (2): 117–126.

    Article  Google Scholar 

  36. Mohamad, Hasmaini, Hazlie Mokhlis, Hew Wooi Ping, et al. 2011. A review on islanding operation and control for distribution network connected with small hydro power plant. Renewable and Sustainable Energy Reviews 15 (8): 3952–3962.

    Article  Google Scholar 

  37. Nand Kishor, R.P. Saini, and S.P. Singh. 2007. A review on hydropower plant models and control. Renewable and Sustainable Energy Reviews 11 (5): 776–796.

    Article  Google Scholar 

  38. Leon, Arturo S., and Ling Zhu. 2014. A dimensional analysis for determining optimal discharge and penstock diameter in impulse and reaction water turbines. Renewable Energy 71: 609–615.

    Article  Google Scholar 

  39. Basso, S., and G. Botter. 2012. Streamflow variability and optimal capacity of run-of-river hydropower plants. Water Resources Research 48 (10).

    Google Scholar 

  40. Yildiz, Veysel, and Jasper A. Vrugt. 2019. A toolbox for the optimal design of run-of-river hydropower plants. Environmental Modelling & Software 111: 134–152.

    Article  Google Scholar 

  41. Yoo, Ju-Hwan. 2009. Maximization of hydropower generation through the application of a linear programming model. Journal of Hydrology 376 (1–2): 182–187.

    Article  Google Scholar 

  42. Das, Himansu, Ajay Kumar Jena, Janmenjoy Nayak, Bighnaraj Naik, and H.S. Behera. 2015. A novel PSO based back propagation learning-MLP (PSO-BP-MLP) for classification. In Computational intelligence in data mining, vol. 2, 461–471. Springer.

    Google Scholar 

  43. Nayak, Janmenjoy, Bighnaraj Naik, A.K. Jena, Rabindra K. Barik, and Himansu Das. 2018. Nature inspired optimizations in cloud computing: Applications and challenges. In Cloud computing for optimization: Foundations, applications, and challenges, 1–26. Springer.

    Google Scholar 

  44. Alvarado-Barrios, Lázaro, A. Rodríguez del Nozal, A. Tapia, José Luis Martínez-Ramos, and D.G. Reina. 2019. An evolutionary computational approach for the problem of unit commitment and economic dispatch in microgrids under several operation modes. Energies 12 (11): 2143.

    Article  Google Scholar 

  45. Anagnostopoulos, John S., and Dimitrios E. Papantonis. 2007. Flow modeling and runner design optimization in turgo water turbines. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 1 (4): 204–209.

    Google Scholar 

  46. Ehteram, Mohammad, Hojat Karami, Sayed-Farhad Mousavi, Saeed Farzin, and Ozgur Kisi. 2018. Evaluation of contemporary evolutionary algorithms for optimization in reservoir operation and water supply. Journal of Water Supply: Research and Technology-Aqua 67 (1): 54–67.

    Article  Google Scholar 

  47. Tapia, A., D.G. Reina, and P. Millán. 2019. An evolutionary computational approach for designing micro hydro power plants. Energies 12 (5): 878.

    Article  Google Scholar 

  48. Holland, John H. 1984. Genetic algorithms and adaptation. USA: Springer.

    Google Scholar 

  49. Itō, H., and K. Imai. 1973. Energy losses at 90 pipe junctions. Journal of the Hydraulics Division 99 (9): 1353–1368.

    Google Scholar 

  50. Dasgupta, Dipankar, and Zbigniew Michalewicz. 2013. Evolutionary algorithms in engineering applications. Springer Science & Business Media.

    Google Scholar 

  51. Reina, D.G., T. Camp, A. Munjal, and S.L. Toral. 2018. Evolutionary deployment and local search-based movements of 0th responders in disaster scenarios. Future Generation Computer Systems 88: 61–78.

    Article  Google Scholar 

  52. Arzamendia, Mario, Derlis Gregor, Daniel Gutierrez Reina, and Sergio Luis Toral. 2017. An evolutionary approach to constrained path planning of an autonomous surface vehicle for maximizing the covered area of Ypacarai lake. Soft Computing 1–12.

    Google Scholar 

  53. Gutiérrez-Reina, Daniel, Vishal Sharma, Ilsun You, and Sergio Toral. 2018. Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (vanets). Sensors 18 (7): 2320.

    Article  Google Scholar 

  54. Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation 6 (2): 182–197.

    Article  Google Scholar 

  55. Ter-Sarkisov, Aram, and Stephen Marsland. 2011. Convergence properties of two (\(\mu +\lambda \)) evolutionary algorithms on onemax and royal roads test functions. arXiv:1108.4080.

  56. Luke, Sean. 2009. Essentials of metaheuristics, vol. 113. Lulu Raleigh.

    Google Scholar 

  57. Reina, D.G., J.M. León-Coca, S.L. Toral, E. Asimakopoulou, F. Barrero, P. Norrington, and N. Bessis. 2014. Multi-objective performance optimization of a probabilistic similarity/dissimilarity-based broadcasting scheme for mobile ad hoc networks in disaster response scenarios. Soft Computing 18 (9): 1745–1756.

    Article  Google Scholar 

  58. Gutiérrez, D. 2018. Evolutionary MHPP. https://github.com/Dany503/Evolutionary-MHPP.

  59. Fortin, Félix-Antoine, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012. Deap: Evolutionary algorithms made easy. Journal of Machine Learning Research 13 (Jul): 2171–2175.

    Google Scholar 

  60. Reina, D.G., R.I. Ciobanu, S.L. Toral, and C. Dobre. 2016. A multi-objective optimization of data dissemination in delay tolerant networks. Expert Systems with Applications 57 (C): 178–191.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the University of Seville under the contract “Contratos de acceso al Sistema Español de Ciencia, Tecnología e Innovación para el desarrollo del programa propio de I+D+i de la Universidad de Sevilla” of D. G. Reina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Reina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tapia, A., Reina, D.G., del Nozal, A.R., Millán, P. (2020). Application of Genetic Algorithms for Designing Micro-Hydro Power Plants in Rural Isolated Areas—A Case Study in San Miguelito, Honduras. In: Rout, M., Rout, J., Das, H. (eds) Nature Inspired Computing for Data Science. Studies in Computational Intelligence, vol 871. Springer, Cham. https://doi.org/10.1007/978-3-030-33820-6_7

Download citation

Publish with us

Policies and ethics