Skip to main content

Electron-Light Interactions Beyond Adiabatic Approximation

  • Chapter
  • First Online:
Near-Field-Mediated Photon–Electron Interactions

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 228))

Abstract

Aligned with the technological developments of electron-based characterization techniques, our theoretical frameworks are yet to be adapted to the strong-laser and slow-electron regimes. More specifically, there exist certain domains where our adiabatic approximations might break down. This is practically important from several viewpoints: (i) in PPM, the shape and amplitude of electron beams are both strongly manipulated, in addition to their phase; (ii) even in free-space electron-light interactions, purely elastic approximations might appear to be a mere over-simplification (Kozak et al. in Nat Phys Lett, 2017 [1]); (iii) during the interaction of electron beams with gratings and light, electron bunching appears to be an additional mechanism to the electron acceleration, where both the acceleration and bunching mechanisms are controlled by the longitudinal broadening of the electron beam relative to the grating period (Talebi in New J Phys 18:123006, 2016 [2]); and (iv) shaped electron beams interacting with matter have different selection rules and might offer approaches for manipulating the electron-induced radiations (Sergeeva et al. in Opt Express 25:26310–26328, 2017 [3]; Tsesses et al. in Phys Rev A 95:013832, 2017 [4]; Kaminer et al. in Phys Rev X 6:011006, 2016 [5]). The last point is fundamentally important, as even for a single electron wave packet, when the electron beam is in a superposition of at least two momentum states, interferences between different quantum paths in the interaction of photons with the electron may occur (Peatross et al. in Phys Rev Lett 100:153601, 2008 [6]). As noted by Keitel and co-workers, the quantum eigenstates of electrons in a nonplanar laser beam or in general shaped light waves are unknown (Peatross et al. in Phys Rev Lett 100:153601, 2008 [6]). For this reason, the development of self-consistent numerical methods may facilitate a better understanding of the outcomes of experiments (Talebi in New J Phys 18:123006, 2016 [2]; White et al. in Phys Rev B 86:205324, 2012 [7]; Kohn et al. in Phys Rev 140:1133, 1965 [8]) and stimulate the design of new experiments.

Portions of the text of this chapter have been re-published with permission from [9], re-printed under the CC BY license; [10], re-printed under the CC BY license.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kozak, T. Eckstein, N. Schonenberger, P. Hommelhoff, Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. Lett. advance online publication, 10/09/2017 [online], https://doi.org/10.1038/nphys4282, http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys4282.html#supplementary-information

    Article  ADS  Google Scholar 

  2. N. Talebi, Schrödinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith-Purcell effect. New J. Phys. 18(12), 123006 (2016). https://doi.org/10.1088/1367-2630/18/12/123006

    Article  ADS  Google Scholar 

  3. D.Y. Sergeeva, A.P. Potylitsyn, A.A. Tishchenko, M.N. Strikhanov, Smith-Purcell radiation from periodic beams. Opt. Express 25(21), 26310–26328 (2017). https://doi.org/10.1364/Oe.25.026310. (in English)

    Article  ADS  Google Scholar 

  4. S. Tsesses, G. Bartal, I. Kaminer, Light generation via quantum interaction of electrons with periodic nanostructures. Phys. Rev. A 95(1), 013832 (2017). https://doi.org/10.1103/physreva.95.013832. (in English)

    Article  ADS  Google Scholar 

  5. I. Kaminer et al., Quantum Cerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6(1), 011006 (2016). https://doi.org/10.1103/physrevx.6.011006. (in English)

    Article  Google Scholar 

  6. J. Peatross, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Photoemission of a single-electron wave packet in a strong laser field. Phys. Rev. Lett. 100(15), 153601 (2008). https://doi.org/10.1103/physrevlett.100.153601. (in English)

    Article  ADS  Google Scholar 

  7. A.J. White, M. Sukharev, M. Galperin, Molecular nanoplasmonics: self-consistent electrodynamics in current-carrying junctions. Phys. Rev. B 86(20), 205324 (2012). https://doi.org/10.1103/PhysRevB.86.205324

    Article  ADS  Google Scholar 

  8. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133. (in English)

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Talebi, Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry AU—Talebi. Nahid. Adv. Phys. X 3(1), 1499438 (2018). https://doi.org/10.1080/23746149.2018.1499438

    Article  MathSciNet  Google Scholar 

  10. N. Talebi, C. Lienau, Interference between quantum paths in coherent Kapitza-Dirac effect. New J. Phys. (2019) [Online]. Available http://iopscience.iop.org/10.1088/1367-2630/ab3ce3

  11. O. Smirnova, M. Spanner, M. Ivanov, Analytical solutions for strong field-driven atomic and molecular one- and two-electron continua and applications to strong-field problems. Phys. Rev. A 77(3), 033407 (2008). https://doi.org/10.1103/physreva.77.033407. (in English)

    Article  ADS  Google Scholar 

  12. D.M. Wolkow, On a mass of solutions of the Dirac equation. Z. Angew. Phys. 94(3–4), 250–260 (1935). https://doi.org/10.1007/bf01331022. (in German)

    Article  Google Scholar 

  13. E. Kasper, Generalization of Schrodingers wave mechanics for relativistic regions of validity. Z. Naturforsch. A, A28(2), 216–221 (1973) [Online]. Available: <Go to ISI>://WOS:A1973S611900009 (in German)

    Google Scholar 

  14. S.T. Park, Propagation of a relativistic electron wave packet in the Dirac equation. Phys. Rev. A 86(6), 062105 (2012). https://doi.org/10.1103/physreva.86.062105. (in English)

    Article  ADS  Google Scholar 

  15. S.T. Park, M.M. Lin, A.H. Zewail, Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010). https://doi.org/10.1088/1367-2630/12/12/123028. (in English)

    Article  ADS  Google Scholar 

  16. F.J.G. de Abajo, A. Asenjo-Garcia, M. Kociak, Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10(5), 1859–1863 (2010). https://doi.org/10.1021/nl100613s. (in English)

    Article  ADS  Google Scholar 

  17. D. Wolf et al., 3D magnetic induction maps of nanoscale materials revealed by electron holographic tomography. Chem. Mater. 27(19), 6771–6778 (2015). https://doi.org/10.1021/acs.chemmater.5b02723. (in English)

    Article  Google Scholar 

  18. R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61(3), 689–746 (1989). https://doi.org/10.1103/RevModPhys.61.689. (in English)

    Article  ADS  Google Scholar 

  19. EJ. Baerends, Perspective on self-consistent equations including exchange and correlation effects; W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133–1138 (in English), Theor. Chem. Acc. 103(3–4), 265–269 (2000). Doi: https://doi.org/10.1007/s002140050031 (in English)

  20. B. Walker, R. Gebauer, Ultrasoft pseudopotentials in time-dependent density-functional theory. J. Chem. Phys. 127(16), 164106 (2007). https://doi.org/10.1063/1.2786999. (in English)

    Article  ADS  Google Scholar 

  21. J. Harris, R.O. Jones, Pseudopotentials in density-functional theory. Phys. Rev. Lett. 41(3), 191–194 (1978). https://doi.org/10.1103/PhysRevLett.41.191. (in English)

    Article  ADS  Google Scholar 

  22. E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997–1000 (1984). https://doi.org/10.1103/PhysRevLett.52.997. (in English)

    Article  ADS  Google Scholar 

  23. X.S. Li, S.M. Smith, A.N. Markevitch, D.A. Romanov, R.J. Levis, H.B. Schlegel, A time-dependent Hartree-Fock approach for studying the electronic optical response of molecules in intense fields. Phys. Chem. Chem. Phys. 7(2), 233–239 (2005). https://doi.org/10.1039/b415849k. (in English)

    Article  Google Scholar 

  24. P.W. Hawkes, E. Kasper, Principles of Electron Optics (Academic Press, London, 1996)

    Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning Inc., United States of America, 1976)

    MATH  Google Scholar 

  26. H. Tal-Ezer, R. Kosloff, An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81(9), 3967–3971 (1984). https://doi.org/10.1063/1.448136

    Article  ADS  Google Scholar 

  27. X.J. Shen, A. Lozano, W. Dong, H.F. Busnengo, X.H. Yan, towards bond selective chemistry from first principles: methane on metal surfaces. Phys. Rev. Lett. 112(4), 046101 (2014). https://doi.org/10.1103/PhysRevLett.112.046101

    Article  ADS  Google Scholar 

  28. L. Gaudreau et al., Coherent control of three-spin states in a triple quantum dot. Nat. Phys. 8, 54. 11/27/2011 [online], https://doi.org/10.1038/nphys2149, https://www.nature.com/articles/nphys2149#supplementary-information

    Article  ADS  Google Scholar 

  29. J. Hansom et al., Environment-assisted quantum control of a solid-state spin via coherent dark states. Nat. Phys. 10, 725, 09/07/2014 [online], https://doi.org/10.1038/nphys3077, https://www.nature.com/articles/nphys3077#supplementary-information

    Article  ADS  Google Scholar 

  30. I.S. Mark, Ultrafast nanoplasmonics under coherent control. New J. Phys. 10(2), 025031 [online], http://stacks.iop.org/1367-2630/10/i=2/a=025031

  31. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367–387 (1948). https://doi.org/10.1103/RevModPhys.20.367

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M. Li et al., Classical-Quantum correspondence for above-threshold ionization. Phy. Rev. Lett. 112(11), 113002 (2014). https://doi.org/10.1103/PhysRevLett.112.113002

    Article  ADS  Google Scholar 

  33. D.B. Milošević, W. Becker, Improved strong-field approximation and quantum-orbit theory: application to ionization by a bicircular laser field. Phys. Rev. A 93(6), 063418 (2016). https://doi.org/10.1103/PhysRevA.93.063418

    Article  ADS  Google Scholar 

  34. A. Zaïr et al., Quantum path interferences in high-order harmonic generation. Phys. Rev. Lett. 100(14), 143902 (2008). https://doi.org/10.1103/PhysRevLett.100.143902

    Article  ADS  Google Scholar 

  35. P. Salieres et al., Feynman’s path-integral approach for intense-laser-atom interactions. Science 292(5518), 902–905 (2001). https://doi.org/10.1126/science.108836. (in English)

    Article  ADS  Google Scholar 

  36. T.C. Weinacht, J. Ahn, P.H. Bucksbaum, Controlling the shape of a quantum wavefunction. Nature 397, 233 (1999). https://doi.org/10.1038/16654

    Article  ADS  Google Scholar 

  37. A. Feist, K.E. Echternkamp, J. Schauss, S.V. Yalunin, S. Schafer, C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521(7551), 200 (2015). https://doi.org/10.1038/nature14463. (in English)

    Article  ADS  Google Scholar 

  38. K.E. Echternkamp, A. Feist, S. Schafer, C. Ropers, Ramsey-type phase control of free-electron beams. Nat. Phys. 12(11), 1000 (2016). https://doi.org/10.1038/nphys3844. (in English)

    Article  Google Scholar 

  39. H. Batelaan, Colloquium: Illuminating the Kapitza-Dirac effect with electron matter optics. Rev. Mod. Phys. 79(3), 929–941 (2007). https://doi.org/10.1103/revmodphys.79.929. (in English)

    Article  ADS  Google Scholar 

  40. P.L. Kapitza, P.A.M. Dirac, The reflection of electrons from standing light waves. Math. Proc. Cambridge Philos. Soc. 29(2), 297–300 (2008). https://doi.org/10.1017/S0305004100011105

    Article  ADS  MATH  Google Scholar 

  41. A. Howie, Photon interactions for electron microscopy applications. Eur. Phys. J. Appl. Phys. 54(3), 33502 (2011). https://doi.org/10.1051/epjap/2010100353

    Article  ADS  Google Scholar 

  42. H. Batelaan, The Kapitza-Dirac effect. Contemp. Phys. 41(6), 369–381 (2000). https://doi.org/10.1080/00107510010001220. (in English)

    Article  ADS  Google Scholar 

  43. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82(1), 209–275 (2010). https://doi.org/10.1103/revmodphys.82.209

    Article  ADS  Google Scholar 

  44. R.F. Harrington, Time-harmonic electromagnetic fields (McGraw-Hill Book Company, New York, 1961)

    Google Scholar 

  45. A. Howie, Stimulated excitation electron microscopy and spectroscopy. Ultramicroscopy 151, 116–121 (2015). https://doi.org/10.1016/j.ultramic.2014.09.006. (in English)

    Article  Google Scholar 

  46. M. Kozak, T. Eckstein, N. Schonenberger, P. Hommelho, Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 14(2), 121 (2018). https://doi.org/10.1038/nphys4282. (in English)

    Article  Google Scholar 

  47. M. Kozak, N. Schonenberger, P. Hommelhoff, Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120(10), 103203 (2018). https://doi.org/10.1103/physrevlett.120.103203. (in English)

    Article  ADS  Google Scholar 

  48. J. Vogelsang et al., Plasmonic-nanofocusing-based electron holography. Acs Photonics 5(9), 3584–3593 (2018). https://doi.org/10.1021/acsphotonics.8b00418

    Article  Google Scholar 

  49. J. Kempe, Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003). https://doi.org/10.1080/00107151031000110776. (in English)

    Article  ADS  Google Scholar 

  50. S. Aaronson, A. Arkhipov, The computational complexity of linear optics. Acm S. Theory Comput. 333–342 (2011) [Online]. Available <GotoISI>://WOS:000297656800035. (in English)

    Google Scholar 

  51. N. Spagnolo et al., Experimental validation of photonic boson sampling. Nat. Photonics 8(8), 615–620 (2014). https://doi.org/10.1038/Nphoton.2014.135. (in English)

    Article  ADS  Google Scholar 

  52. L. Sansoni et al., Two-particle Bosonic-Fermionic Quantumwalk via integrated photonics. Phys. Rev. Lett. 108(1), 010502 (2012). https://doi.org/10.1103/physrevlett.108.010502. (in English)

    Article  ADS  Google Scholar 

  53. R. Garciamolina, A. Grasmarti, A. Howie, R.H. Ritchie, Retardation effects in the interaction of charged-particle beams with bounded condensed media. J. Phys. C. Solid State. 18(27), 5335–5345 (1985). https://doi.org/10.1088/0022-3719/18/27/019. (in English)

    Article  ADS  Google Scholar 

  54. F.J.G. de Abajo, A. Rivacoba, N. Zabala, N. Yamamoto, Boundary effects in cherenkov radiation. Phys. Rev. B 69(15), 155420 (2004). https://doi.org/10.1103/physrevb.69.155420. (in English)

    Article  ADS  Google Scholar 

  55. C. Luo, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, Cerenkov radiation in photonic crystals. Science 299(5605), 368–371 (2003). https://doi.org/10.1126/science.1079549. (in English)

    Article  ADS  Google Scholar 

  56. N. Yamamoto, F.J.G. de Abajo, V. Myroshnychenko, Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. Phys. Rev. B 91(12), 125144 (2015). https://doi.org/10.1103/physrevb.91.125144. (in English)

    Article  ADS  Google Scholar 

  57. K. Mizuno, J. Pae, T. Nozokido, K. Furuya, Experimental evidence of the inverse Smith-Purcell effect. Nature 328(6125), 45–47 (1987). https://doi.org/10.1038/328045a0

    Article  ADS  Google Scholar 

  58. A. Asenjo-Garcia, F.J.G. de Abajo, Plasmon electron energy-gain spectroscopy. New J. Phys. 15, 103021 (2013). https://doi.org/10.1088/1367-2630/15/10/103021. (in English)

    Article  ADS  Google Scholar 

  59. J.P. Verboncoeur, Particle simulation of plasmas: review and advances. Plasma Phys. Contr. F. 47, A231–A260 (2005). https://doi.org/10.1088/0741-3335/47/5A/017. (in English)

    Article  ADS  Google Scholar 

  60. A. Fallahi, F. Kartner, Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches. J. Phys. B Mol. Opt. 47(23), 234015 (2014). https://doi.org/10.1088/0953-4075/47/23/234015. (in English)

    Article  ADS  Google Scholar 

  61. J.-L. Vay, Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15(5), 056701 (2008). https://doi.org/10.1063/1.2837054

    Article  ADS  Google Scholar 

  62. B. Naranjo, A. Valloni, S. Putterman, J.B. Rosenzweig, Stable charged-particle acceleration and focusing in a laser accelerator using spatial Harmonics. Phys. Rev. Lett. 109(16), 164803 (2012). https://doi.org/10.1103/physrevlett.109.164803

    Article  ADS  Google Scholar 

  63. J. Breuer, J. McNeur, P. Hommelhoff, Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations. J. Phys. B: At. Mol. Opt. Phys. 47(23), 234004 (2014). https://doi.org/10.1088/0953-4075/47/23/234004

    Article  ADS  Google Scholar 

  64. M. Ferrario et al., IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers. Nucl. Instrum. Methods Phys. Res. Sect. A 740, 138–146 (2014). https://doi.org/10.1016/j.nima.2013.11.040

    Article  ADS  Google Scholar 

  65. E.A. Peralta et al., Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91, 11/06/2013 [online], https://doi.org/10.1038/nature12664, https://www.nature.com/articles/nature12664#supplementary-information

    Article  ADS  Google Scholar 

  66. J. Breuer, P. Hommelhoff, Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111(13), 134803 (2013). https://doi.org/10.1103/physrevlett.111.134803

    Article  ADS  Google Scholar 

  67. P. Baum, On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chem. Phys. 423, 55–61 (2013). https://doi.org/10.1016/j.chemphys.2013.06.012

    Article  Google Scholar 

  68. L. Kasmi, D. Kreier, M. Bradler, E. Riedle, P. Baum, Femtosecond single-electron pulses generated by two-photon photoemission close to the work function. New J. Phys. 17(3), 033008 (2015). https://doi.org/10.1088/1367-2630/17/3/033008

    Article  ADS  Google Scholar 

  69. J. Hoffrogge et al., Tip-based source of femtosecond electron pulses at 30 keV. J. Appl. Phys. 115(9), 094506 (2014). https://doi.org/10.1063/1.4867185

    Article  ADS  Google Scholar 

  70. B. Piglosiewicz et al., Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 8, 37, 11/10/2013 [online], https://doi.org/10.1038/nphoton.2013.288, https://www.nature.com/articles/nphoton.2013.288#supplementary-information

    Article  ADS  Google Scholar 

  71. M. Aidelsburger, F.O. Kirchner, F. Krausz, P. Baum, Single-electron pulses for ultrafast diffraction. Proc. Natl. Acad. Sci. 107(46), 19714–19719 (2010). https://doi.org/10.1073/pnas.1010165107

    Article  ADS  Google Scholar 

  72. M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, Attosecond physics in photoemission from a metal nanotip. J. Phys. B At. Mol. Opt. Phys. 45(7), 074006 (2012). https://doi.org/10.1088/0953-4075/45/7/074006

    Article  ADS  Google Scholar 

  73. G. Herink, D.R. Solli, M. Gulde, C. Ropers, Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190, 03/07/2012 [online], https://doi.org/10.1038/nature10878, https://www.nature.com/articles/nature10878#supplementary-information

    Article  ADS  Google Scholar 

  74. B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, H. Batelaan, Laser-induced ultrafast electron emission from a field emission tip. New J. Phys. 9(5), 142 (2007). https://doi.org/10.1088/1367-2630/9/5/142

    Article  ADS  Google Scholar 

  75. B. Schröder, M. Sivis, R. Bormann, S. Schäfer, C. Ropers, An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons. Appl. Phys. Lett. 107(23), 231105 (2015). https://doi.org/10.1063/1.4937121

    Article  ADS  Google Scholar 

  76. M. Müller, V. Kravtsov, A. Paarmann, M.B. Raschke, R. Ernstorfer, Nanofocused plasmon-driven sub-10 fs electron point Source. Acs Photonics 3(4), 611–619 (2016). https://doi.org/10.1021/acsphotonics.5b00710

    Article  Google Scholar 

  77. K.E. Echternkamp, G. Herink, S.V. Yalunin, K. Rademann, S. Schäfer, C. Ropers, Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics. Appl. Phys. B J 122(4), 80 (2016). https://doi.org/10.1007/s00340-016-6351-x

    Article  ADS  Google Scholar 

  78. C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum, All-optical control and metrology of electron pulses. Science 352(6284), 429–433 (2016). https://doi.org/10.1126/science.aae0003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. A. Gliserin, M. Walbran, P. Baum, A high-resolution time-of-flight energy analyzer for femtosecond electron pulses at 30 keV. Rev. Sci. Instrum. 87(3), 033302 (2016). https://doi.org/10.1063/1.4942912

    Article  ADS  Google Scholar 

  80. J. Vogelsang et al., Ultrafast electron emission from a sharp metal nanotaper driven by Adiabatic nanofocusing of surface plasmons. Nano Lett. 15(7), 4685–4691 (2015). https://doi.org/10.1021/acs.nanolett.5b01513

    Article  ADS  Google Scholar 

  81. A. Gliserin, A. Apolonski, F. Krausz, P. Baum, Compression of single-electron pulses with a microwave cavity. New J. Phys. 14, 073055 (2012). https://doi.org/10.1088/1367-2630/14/7/073055. (in English)

    Article  ADS  Google Scholar 

  82. P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125, 127(18), 164705, 189901 (2006, 2007). Doi:https://doi.org/10.1063/1.2802403 (in English)

  83. P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125(16), 164705 (2006). Doi:https://doi.org/10.1063/1.2360270

    Article  ADS  Google Scholar 

  84. R.M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45(3), 364–374 (1997). https://doi.org/10.1109/8.558652

    Article  ADS  Google Scholar 

  85. D. Ehberger et al., Highly coherent electron beam from a laser-triggered tungsten needle tip. Phys. Rev. Lett. 114(22), 227601 (2015). https://doi.org/10.1103/physrevlett.114.227601. (in English)

    Article  ADS  Google Scholar 

  86. D. Gabor, A new microscopic principle. Nature 161(4098), 777–778 (1948). https://doi.org/10.1038/161777a0

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talebi, N. (2019). Electron-Light Interactions Beyond Adiabatic Approximation. In: Near-Field-Mediated Photon–Electron Interactions. Springer Series in Optical Sciences, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-33816-9_8

Download citation

Publish with us

Policies and ethics