Skip to main content

Optical Modes of Gold Tapers Probed by Electron Beams

  • Chapter
  • First Online:
Near-Field-Mediated Photon–Electron Interactions

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 228))

  • 707 Accesses

Abstract

The optical microscopy and spectroscopy of nano-objects and macromolecules demands the efficient coupling of far-field light to the microscopic scale extended at only a few percent of the optical wavelength. Thus, a far-field-to-near-field coupler is a vital tool in optical metrology, providing the ability to combine well-advanced optical techniques such as pump-probe spectroscopy and spectral interferometry with the microscopic world. Three-dimensional optical tapers, particularly metallic tapers, have been proposed [1], intensively investigated, and employed in many groups worldwide for this purpose [2, 3]. The concept that allows an efficient coupling of far-field light onto single nano-objects is adiabatic nanofocusing [1]. In adiabatic nanofocusing , the optical modes of a metallic taper evolve, via propagation along the shaft towards the apex, in an extremely efficient mode-conversion procedure and result in localization of the electromagnetic energy only at the very apex, extended within a few atomic scales, provided that the apex is sharp enough.

Portions of the text of this chapter have been re-published with permission from [4], Copyright © 2015, American Chemical Society; [5], Copyright © 2015, American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides (in English). Phys. Rev. Lett. 93(13) (2004). doi: Artn 137404 https://doi.org/10.1103/physrevlett.93.137404

  2. S. Schmidt et al., Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6(7), 6040–6048 (2012). https://doi.org/10.1021/nn301121h

    Article  Google Scholar 

  3. C. Ropers, C.C. Neacsu, T. Elsaesser, M. Albrecht, M.B. Raschke, C. Lienau, Grating-coupling of surface plasmons onto metallic tips:  a nanoconfined light source. Nano Lett. 7(9), 2784–2788 (2007). https://doi.org/10.1021/nl071340m

    Article  ADS  Google Scholar 

  4. N. Talebi et al., Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances (in English). ACS Nano 9(7), 7641–7648 (2015). https://doi.org/10.1021/acsnano.5b03024

    Article  MathSciNet  Google Scholar 

  5. S. Guo et al., Reflection and phase matching in plasmonic gold tapers. Nano Lett. 16(10), 6137–6144 (2016). https://doi.org/10.1021/acs.nanolett.6b02353

    Article  ADS  Google Scholar 

  6. S. Grésillon et al., Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82(22), 4520–4523 (1999). https://doi.org/10.1103/physrevlett.82.4520

    Article  ADS  Google Scholar 

  7. P.G. Etchegoin, E.C.L. Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125(16), 164705 (2006). https://doi.org/10.1063/1.2360270

    Article  ADS  Google Scholar 

  8. F. Huth et al., Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13(3), 1065–1072 (2013). https://doi.org/10.1021/nl304289g

    Article  ADS  Google Scholar 

  9. L.B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice Hall: Englewood Cliff, New Jersey, 1973)

    Google Scholar 

  10. J.J. Bowman, T.B.A. Senior, P.L.E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Hemisphere, New York, 1987)

    Google Scholar 

  11. M.A. Lyalinov, Electromagnetic scattering by a circular impedance cone: diffraction coefficients and surface waves. IMA J. Appl. Math. 79(3), 393–430 (2014). https://doi.org/10.1093/imamat/hxs072

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, S. Yokoyama, Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach. J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007). https://doi.org/10.1088/1751-8113/40/41/015

    Article  ADS  MathSciNet  Google Scholar 

  13. J.C. Ashley, L.C. Emerson, Dispersion relations for non-radiative surface plasmons on cylinders. Surf. Sci. 41(2), 615–618 (1974). doi:https://doi.org/10.1016/0039-6028(74)90080-6

    Article  ADS  Google Scholar 

  14. C.A. Pfeiffer, E.N. Economou, K.L. Ngai, Surface polaritons in a circularly cylindrical interface: surface plasmons. Phys. Rev. B 10(8), 3038–3051. (1974). https://doi.org/10.1103/physrevb.10.3038

    Article  ADS  Google Scholar 

  15. L. Novotny, C. Hafner, Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E 50(5), 4094–4106. (1994). https://doi.org/10.1103/physreve.50.4094

    Article  ADS  Google Scholar 

  16. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides (vol 93, 137404, 2004) (in English). Phys. Rev. Lett. 106(1) (2011). doi: Artn 019901 https://doi.org/10.1103/physrevlett.106.019901

  17. N. Issa, R. Guckenberger, Optical nanofocusing on tapered metallic waveguides. Plasmonics 2, 31–37 (2007)

    Article  Google Scholar 

  18. M. Esmann et al., K-space imaging of the eigenmodes on a sharp gold taper for near-field scanning optical microscopy. Beilstein J. Nanotechnol. 4, 603–610 (2013)

    Article  Google Scholar 

  19. N. Talebi, W. Sigle, R. Vogelgesang, P. van Aken, Numerical simulations of interference effects in photon-assisted electron energy-loss spectroscopy. New J. Phys. 15(5), 053013 (2013). https://doi.org/10.1088/1367-2630/15/5/053013

    Article  ADS  Google Scholar 

  20. J.A. Stratton, Electromagnetic Theory (Wiley, New York, 2007)

    Google Scholar 

  21. R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill Book Company, New York, 1961)

    Google Scholar 

  22. R. Garciamolina, A. Grasmarti, A. Howie, R.H. Ritchie, Retardation effects in the interaction of charged-particle beams with bounded condensed media (in English). J. Phys. C Solid State 18(27), 5335–5345 (1985). doi:https://doi.org/10.1088/0022-3719/18/27/019

    Article  ADS  Google Scholar 

  23. J.C. Ashley, L.C. Emerson, Dispersion-relations for non-radiative surface plasmons on cylinders. Surf. Sci. 41(2), 615–618 (1974). https://doi.org/10.1016/0039-6028(74)90080-6

    Article  ADS  Google Scholar 

  24. C.A. Pfeiffer, E.N. Economou, K.L. Ngai, Surface polaritons in a circularly cylindrical interface—surface plasmons. Phys. Rev. B 10(8), 3038–3051 (1974). https://doi.org/10.1103/physrevb.10.3038

    Article  ADS  Google Scholar 

  25. F.J.G. de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy (in English) Phys. Rev. Lett. Article 100(10), 4, Art no. 106804. https://doi.org/10.1103/physrevlett.100.106804

  26. C.C. Neacsu, S. Berweger, R.L. Olmon, L.V. Saraf, C. Ropers, M.B. Raschke, Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10(2), 592–596 (2010). https://doi.org/10.1021/nl903574a

    Article  ADS  Google Scholar 

  27. M. Esmann et al., k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy, (in English). Beilstein J. Nanotech 4, 603–610 (2013). doi:https://doi.org/10.3762/bjnano.4.67

    Article  Google Scholar 

  28. S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, P. Hommelhoff, Large optical field enhancement for nanotips with large opening angles. New J. Phys. 17(6), 063010 (2015). (Online). Available: http://stacks.iop.org/1367-2630/17/i=6/a=063010

  29. B. Schröder et al., Real-space imaging of nanotip plasmons using electron energy loss spectroscopy. Phys. Rev. B 92(8), 085411 (2015). https://doi.org/10.1103/PhysRevB.92.085411

    Article  ADS  Google Scholar 

  30. S.V. Yalunin, B. Schröder, C. Ropers, Theory of electron energy loss near plasmonic wires, nanorods, and cones. Phys. Rev. B 93(11), 115408 (2016) (Online). Available: http://link.aps.org/doi/10.1103/PhysRevB.93.115408

  31. A.J. Babadjanyan, N.L. Margaryan, K.V. Nerkararyan, Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87(8), 3785–3788 (2000). https://doi.org/10.1063/1.372414

    Article  ADS  Google Scholar 

  32. M. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93(13) (2004). https://doi.org/10.1103/physrevlett.93.137404

  33. M.S. Jang, H. Atwater, Plasmonic rainbow trapping structures for light localization and spectrum splitting. Phys. Rev. Lett. 107(20), 207401 (2011) (Online). Available: http://link.aps.org/doi/10.1103/PhysRevLett.107.207401

  34. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972) (Online). Available: http://link.aps.org/doi/10.1103/PhysRevB.6.4370

  35. V. Kravtsov, J.M. Atkin, M.B. Raschke, Group delay and dispersion in adiabatic plasmonic nanofocusing. Opt. Lett. 38(8), 1322–1324 (2013). https://doi.org/10.1364/ol.38.001322

    Article  ADS  Google Scholar 

  36. S.R. Guo et al., Reflection and phase matching in plasmonic gold tapers (in English). Nano Lett. 16(10), 6137–6144 (2016). https://doi.org/10.1021/acs.nanolett.6b02353

    Article  ADS  Google Scholar 

  37. P. Groß, M. Esmann, S.F. Becker, J. Vogelsang, N. Talebi, C. Lienau, Plasmonic nanofocusing—grey holes for light. Adv. Phys. X, 1–34 (2016). https://doi.org/10.1080/23746149.2016.1177469

    Google Scholar 

  38. G. Richter, K. Hillerich, D.S. Gianola, R. Mönig, O. Kraft, C.A. Volkert, Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9(8), 3048–3052 (2009). https://doi.org/10.1021/nl9015107

    Article  ADS  Google Scholar 

  39. J. Dorfmüller et al., Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 9(6), 2372–2377 (2009). https://doi.org/10.1021/nl900900r

    Article  ADS  Google Scholar 

  40. X. Zhou, A. Hörl, A. Trügler, U. Hohenester, T.B. Norris, A.A. Herzing, Effect of multipole excitations in electron energy-loss spectroscopy of surface plasmon modes in silver nanowires. J. Appl. Phys. 116(22), 223101 (2014). https://doi.org/10.1063/1.4903535

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talebi, N. (2019). Optical Modes of Gold Tapers Probed by Electron Beams. In: Near-Field-Mediated Photon–Electron Interactions. Springer Series in Optical Sciences, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-33816-9_6

Download citation

Publish with us

Policies and ethics