Skip to main content

Toroidal Moments Probed by Electron Beams

  • Chapter
  • First Online:
Near-Field-Mediated Photon–Electron Interactions

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 228))

  • 796 Accesses

Abstract

Dipole selection rules underpin much of our understanding of the characterization of matter and its interaction with external radiation. However, there are several examples where these selection rules simply break down and a more sophisticated knowledge of matter becomes necessary. An example, which is becoming increasingly more fascinating, is macroscopic toroidization (density of toroidal dipoles), which is a direct consequence of retardation. In fact, unlike the classical family of electric and magnetic multipoles that are outcomes of the Taylor expansion of the electromagnetic potentials and sources, toroidal dipoles are obtained by the decomposition of moment tensors. This chapter aims to discuss the fundamental and practical aspects of toroidal multipolar moments in electrodynamics, from their emergence in the expansion set, the electromagnetic field associated with them, and the unique characteristics of their interaction with external radiation and other moments to the recent attempts to realize pronounced toroidal resonances in smart configurations of meta-molecules (Talebi et al. in Nanophotonics 7:93, 2018, [1]). In particular, we outline our work in designing oligomeric meta-molecules that purely support toroidal moments within a frequency range using the Babinet’s principle and duality of electromagnetics theory. We further discuss the radiation and coupling of toroidal moments in individual and merged oligomeric systems and experimentally probe those moments using electron beams.

Portions of the text of this chapter have been re-published with permission from [78], re-printed under the CC BY license [1], re-printed under the CC BY license; [3], Copyright © 2018, American Chemical Society; [4], Copyright © 2014, Springer-Verlag Berlin Heidelberg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Talebi, S. Guo, A. van Aken Peter, Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. Nanophotonics 7, p 93 (2018)

    Article  Google Scholar 

  2. M. Kociak, L.F. Zagonel, Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 174, 50–69 (2017). https://doi.org/10.1016/j.ultramic.2016.11.018

    Article  Google Scholar 

  3. S. Guo, N. Talebi, P.A. van Aken, Long-range coupling of toroidal moments for the visible. ACS Photonics 5(4), 1326–1333 (2018/04/18). https://doi.org/10.1021/acsphotonics.7b01313

    Article  Google Scholar 

  4. N. Talebi, B. Ögüt, W. Sigle, R. Vogelgesang, P.A. van Aken, On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities. Appl. Phys. A 116(3), 947–954 (2014/09/01). https://doi.org/10.1007/s00339-014-8532-y

    Article  Google Scholar 

  5. I.B. Zeldovich, Electromagnetic interaction with parity violation (in English). Sov. Phys. JETP-USSR 6(6), 1184–1186 (1958). [Online]. Available: <Go to ISI>://WOS:A1958WT97900044

    Google Scholar 

  6. V.M. Dubovik, V.V. Tugushev, Toroid moments in electrodynamics and solid-state physics (in English). Phys. Rep. 187(4), 145–202 (1990). https://doi.org/10.1016/0370-1573(90)90042-Z

    Article  ADS  Google Scholar 

  7. N. Papasimakis, V.A. Fedotov, V. Savinov, T.A. Raybould, N.I. Zheludev, Electromagnetic toroidal excitations in matter and free space (in English). Nat. Mater. 15(3), 263–271 (2016). https://doi.org/10.1038/NMAT4563

    Article  ADS  Google Scholar 

  8. V.M. Dubovik, L.A. Tosunian, V.V. Tugushev, Axial toroidal moments in electrodynamics and solid-state physics (in Russian). Zh. Eksp. Teor. Fiz+. 90(2), 590–605 (1986 Feb). [Online]. Available: <Go to ISI>://WOS:A1986A438000018

    Google Scholar 

  9. K. Marinov, A.D. Boardman, V.A. Fedotov, N. Zheludev, Toroidal metamaterial (in English). New J Phys. 9 (2007 Sep 14). doi:Artn 324, https://doi.org/10.1088/1367-2630/9/9/324

  10. N.A. Spaldin, M. Fiebig, M. Mostovoy, The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect (in English). J. Phys. Condens. Mat. 20(43) (2008 Oct 29). doi:Artn 434203, https://doi.org/10.1088/0953-8984/20/43/434203

  11. A.S. Zimmermann, D. Meier, M. Fiebig, Ferroic nature of magnetic toroidal order (in English). Nat Commun 5 (2014 Sep). doi:Artn 4796, https://doi.org/10.1038/ncomms5796

  12. V.A. Fedotov, A.V. Rogacheva, V. Savinov, D.P. Tsai, N.I. Zheludev, Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials (in English). Sci. Rep. 3 (2013 Oct 17). doi:Artn 2967, https://doi.org/10.1038/srep02967

  13. V. Savinov, V.A. Fedotov, N.I. Zheludev, Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials (in English). Phys. Rev. B 89(20) (2014 May 14). doi:Artn 205112, https://doi.org/10.1103/physrevb.89.205112

  14. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Toroidal dipolar response in a metamaterial (in English). Science 330(6010), 1510–1512 (2010). https://doi.org/10.1126/science.1197172

    Article  ADS  Google Scholar 

  15. Y.W. Huang et al., Design of plasmonic toroidal metamaterials at optical frequencies (in English). Opt. Express 20(2), 1760–1768 (2012). https://doi.org/10.1364/Oe.20.001760

    Article  ADS  Google Scholar 

  16. G. Thorner, J.M. Kiat, C. Bogicevic, I. Kornev, Axial hypertoroidal moment in a ferroelectric nanotorus: A way to switch local polarization (in English). Phys. Rev. B 89(22) (2014 Jun 6). doi:Artn 220103, https://doi.org/10.1103/physrevb.89.220103

  17. N. Talebi, Optical modes in slab waveguides with magnetoelectric effect (in English). J. Opt. UK 18(5) (2016 May). doi:Artn 055607, https://doi.org/10.1088/2040-8978/18/5/055607

  18. J.D. Jackson, From Lorenz to Coulomb and other explicit gauge transformations (in English). Am. J. Phys. 70(9), 917–928 (2002). https://doi.org/10.1119/1.1491265

    Article  ADS  Google Scholar 

  19. Vrejoiu, C.: Electromagnetic multipoles in Cartesian coordinates (in English). J. Phys. A Math. Gen. 35(46), 9911–9922 (2002 Nov 22). https://doi.org/10.1088/0305-4470/35/46/313, Pii S0305-4470(02)39273-4

    Article  MathSciNet  Google Scholar 

  20. T. Gongora, E. Ley-Koo, Complete electromagnetic multipole expansion including toroidal moments. Rev. Mex. Fis. E 52, 188–197 (2006)

    Google Scholar 

  21. C.G. Gray, Multipole expansions of electromagnetic-fields using debye potentials (in English). Am. J. Phys. 46(2), 169–179 (1978). https://doi.org/10.1119/1.11364

    Article  ADS  Google Scholar 

  22. N.A. Spaldin, M. Fechner, E. Bousquet, A. Balatsky, L. Nordstrom, Monopole-based formalism for the diagonal magnetoelectric response (in English). Phys. Rev. B 88(9) (2013 Sep 23). doi:Artn 094429, https://doi.org/10.1103/physrevb.88.094429

  23. J. Preskill, Magnetic monopoles (in English). Annu. Rev. Nucl. Part S 34, 461–530 (1984). [Online]. Available: <Go to ISI>://WOS:A1984TU83600012

    Article  ADS  Google Scholar 

  24. Y.A. Artamonov, A.A. Gorbatsevich, Symmetry and dynamics of systems with toroidal moments (in Russian). Zh. Eksp. Teor. Fiz+ 89(3), 1078–1093 (1985). [Online]. Available: <Go to ISI>://WOS:A1985ASL8100033

    Google Scholar 

  25. E.E. Radescu, G. Vaman, Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 65(4 Pt 2B), 046609 (2002 Apr). https://doi.org/10.1103/physreve.65.046609

  26. A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.L. Prosvirnin, Y. Chen, N.I. Zheludev, Nanostructured metal film with asymmetric optical transmission (in English). Nano Lett. 8(9), 2940–2943 (2008). https://doi.org/10.1021/nl801794d

    Article  ADS  Google Scholar 

  27. S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics (Springer Spektrum, Wiesbaden, 2016)

    Book  Google Scholar 

  28. Y.M. Liu, X. Zhang, Metamaterials: a new frontier of science and technology (in English). Chem. Soc. Rev. 40(5), 2494–2507 (2011). https://doi.org/10.1039/c0cs00184h

    Article  Google Scholar 

  29. N. Papasimakis, V.A. Fedotov, K. Marinov, N.I. Zheludev, Gyrotropy of a metamolecule: wire on a torus. Phys. Rev. Lett. 103(9), 093901 (2009 Aug 28). https://doi.org/10.1103/physrevlett.103.093901

  30. K. Marinov, A.D. Boardman, V.A. Fedotov, N. Zheludev, Toroidal metamaterial. New J. Phys. 9(9), 324 (2007). [Online]. Available: http://stacks.iop.org/1367-2630/9/i=9/a=324

  31. Y.-W. Huang et al., Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 20(2), 1760–1768. (2012/01/16). https://doi.org/10.1364/oe.20.001760

    Article  ADS  Google Scholar 

  32. C. Tang et al., Toroidal dipolar response in metamaterials composed of metal–dielectric–metal sandwich magnetic resonators. IEEE Photonics J. 8(3), 1–9 (2016). https://doi.org/10.1109/JPHOT.2016.2574865

    Article  Google Scholar 

  33. P.C. Wu et al., Plasmon coupling in vertical split-ring resonator metamolecules. Sci. Rep. 5, 9726 (06/05/2015). https://doi.org/10.1038/srep09726

  34. Z.-G. Dong, J. Zhu, X. Yin, J. Li, C. Lu, X. Zhang, All-optical Hall effect by the dynamic toroidal moment in a cavity-based metamaterial. Phys. Rev. B 87(24), 245429 (06/24/2013). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.87.245429

  35. P.R. Wu et al., Horizontal toroidal response in three-dimensional plasmonic (Conference Presentation), vol. 9921, pp. 992120–992120-1 (2016). [Online]. Available: http://dx.doi.org/10.1117/12.2236879

  36. C.Y. Liao et al., Optical toroidal response in three-dimensional plasmonic metamaterial, vol. 9547, pp. 954724–954724-4 (2015). [Online]. Available: http://dx.doi.org/10.1117/12.2189052

  37. T.A. Raybould et al., Toroidal circular dichroism. Phys. Rev. B 94(3), 035119 (07/08/2016). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.94.035119

  38. S. Han, L. Cong, F. Gao, R. Singh, H. Yang, Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials. Ann. Phys. 528(5), 352–357 (2016). https://doi.org/10.1002/andp.201600016

    Article  Google Scholar 

  39. Y. Fan, Z. Wei, H. Li, H. Chen, C.M. Soukoulis, Low-loss and high-Qplanar metamaterial with toroidal moment. Phys. Rev. B 87(11) (2013). https://doi.org/10.1103/physrevb.87.115417

  40. A.A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, E.N. Economou, Extremely high Q-factor metamaterials due to anapole excitation. Phys. Rev. B 95(3), 035104 (01/03/2017). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.95.035104

  41. Y. Bao, X. Zhu, Z. Fang, Plasmonic toroidal dipolar response under radially polarized excitation. Sci. Rep. 5, 11793 (06/26/2015). https://doi.org/10.1038/srep11793, http://www.nature.com/articles/srep11793#supplementary-information

  42. Z.-G. Dong et al., Optical toroidal dipolar response by an asymmetric double-bar metamaterial. Appl. Phys. Lett. 101(14), 144105 (2012). https://doi.org/10.1063/1.4757613

    Article  ADS  Google Scholar 

  43. J. Li et al., Optical responses of magnetic-vortex resonance in double-disk metamaterial variations. Phys. Lett. A 378(26–27), 1871–1875 (5/16/2014). http://dx.doi.org/10.1016/j.physleta.2014.04.049

    Article  ADS  Google Scholar 

  44. V.A. Fedotov, A.V. Rogacheva, V. Savinov, D.P. Tsai, N.I. Zheludev, Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep. 3, 2967 (2013). https://doi.org/10.1038/srep02967

    Article  ADS  Google Scholar 

  45. L.-Y. Guo, M.-H. Li, X.-J. Huang, H.-L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion. Appl. Phys. Lett. 105(3), 033507 (2014). https://doi.org/10.1063/1.4891643

    Article  ADS  Google Scholar 

  46. P.C. Wu et al., Vertical split-ring resonators for plasmon coupling, sensing and metasurface. 9544, 954423–954423-4 (2015). [Online]. Available: http://dx.doi.org/10.1117/12.2189249

  47. A.E. Miroshnichenko et al., Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (08/27/2015). https://doi.org/10.1038/ncomms9069, https://www.nature.com/articles/ncomms9069#supplementary-information

  48. A.A. Basharin et al., Dielectric metamaterials with toroidal dipolar response. Phys. Rev. X 5(1), 011036 (03/27/2015). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevX.5.011036

  49. J. Li, J. Shao, Y.-H. Wang, M.-J. Zhu, J.-Q. Li, Z.-G. Dong, Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime. Opt. Express 23(22), 29138–29144 (2015/11/02). https://doi.org/10.1364/oe.23.029138

    Article  ADS  Google Scholar 

  50. W. Liu, J. Zhang, A.E. Miroshnichenko, Toroidal dipole-induced transparency in core–shell nanoparticles. Laser Photonics Rev. 9(5), 564–570 (2015). https://doi.org/10.1002/lpor.201500102

    Article  ADS  Google Scholar 

  51. Q. Zhang, J.J. Xiao, X.M. Zhang, D. Han, L. Gao, Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes. ACS Photonics 2(1), 60–65 (2015/01/21). https://doi.org/10.1021/ph500229p

    Article  Google Scholar 

  52. J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, Z. Dong, Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection. Opt. Lett. 39(23), 6683–6686 (2014/12/01). https://doi.org/10.1364/ol.39.006683

    Article  ADS  Google Scholar 

  53. V.C. Alexey A. Basharin, N. Volsky, M. Kafesaki, E.N. Economou, Extremely high Q-factor metamaterials due to anapole excitation. [Online] Available: arXiv:1608.03233 [physics.class-ph]

  54. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12(10), 5239–5244 (2012/10/10). https://doi.org/10.1021/nl302418n

    Article  ADS  Google Scholar 

  55. F. Roder, H. Lichte, Inelastic electron holography—first results with surface plasmons (in English). Eur. Phys. J. Appl. Phys. 54(3) (2011 June). doi:Artn 33504, https://doi.org/10.1051/epjap/2010100378

  56. N. Talebi, Spectral interferometry with electron microscopes. Sci. Rep. 6, 33874 (09/21/2016). https://doi.org/10.1038/srep33874, https://www.nature.com/articles/srep33874#supplementary-information

  57. G. Guzzinati, A. Beche, H. Lourenco-Martins, J. Martin, M. Kociak, J. Verbeeck, Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams (in English). Nat. Commun. 8 (2017 Apr 12). doi:Artn 14999, https://doi.org/10.1038/ncomms14999

  58. X. Zhang et al., Asymmetric excitation of surface plasmons by dark mode coupling. Sci. Adv. 2(2) (2016). https://doi.org/10.1126/sciadv.1501142

    Article  ADS  Google Scholar 

  59. S.J. Barrow, D. Rossouw, A.M. Funston, G.A. Botton, P. Mulvaney, Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy. Nano Lett. 14(7), 3799–3808 (2014/07/09). https://doi.org/10.1021/nl5009053

    Article  ADS  Google Scholar 

  60. A.L. Koh et al., Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3(10), 3015–3022 (2009/10/27). https://doi.org/10.1021/nn900922z

    Article  Google Scholar 

  61. G. Fletcher, M.D. Arnold, T. Pedersen, V.J. Keast, M.B. Cortie, Multipolar and dark-mode plasmon resonances on drilled silver nano-triangles. Opt. Express 23(14), 18002–18013 (2015/07/13). https://doi.org/10.1364/oe.23.018002

    Article  ADS  Google Scholar 

  62. S.A. Maier, Plasmonics: the benefits of darkness. Nat. Mater. 8(9), 699–700 (2009) https://doi.org/10.1038/nmat2522. [Online]. Available: http://dx.doi.org/10.1038/nmat2522

    Article  ADS  Google Scholar 

  63. W.H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, S. Xiao, Dark plasmonic mode based perfect absorption and refractive index sensing. Nanoscale 9(26), 8907–8912 (2017). https://doi.org/10.1039/c7nr02768k

    Article  Google Scholar 

  64. W. Zhou, T.W. Odom, Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 6, 423 (05/15/2011). https://doi.org/10.1038/nnano.2011.72, https://www.nature.com/articles/nnano.2011.72#supplementary-information

    Article  ADS  Google Scholar 

  65. M.-W. Chu, V. Myroshnychenko, C.H. Chen, J.-P. Deng, C.-Y. Mou, F.J. García de Abajo, Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett. 9(1), 399–404 (2009/01/14). https://doi.org/10.1021/nl803270x

    Article  ADS  Google Scholar 

  66. F.-P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J.R. Krenn, M. Kociak, How dark are radial breathing modes in plasmonic nanodisks? ACS Photonics 5(3), 861–866 (2018/03/21). https://doi.org/10.1021/acsphotonics.7b01060

    Article  Google Scholar 

  67. M. Gupta et al., Sharp toroidal resonances in planar terahertz metasurfaces. Adv. Mater. 28(37), 8206–8211 (2016). https://doi.org/10.1002/adma.201601611

    Article  Google Scholar 

  68. B. Han, X. Li, C. Sui, J. Diao, X. Jing, Z. Hong, Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response. Opt. Mater. Express 8(8), 2197–2207 (2018/08/01). https://doi.org/10.1364/ome.8.002197

    Article  ADS  Google Scholar 

  69. D.W. Watson, S.D. Jenkins, J. Ruostekoski, V.A. Fedotov, N.I. Zheludev, Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods. Phys. Rev. B 93(12) (2016). https://doi.org/10.1103/physrevb.93.125420

  70. L. Zhu et al., A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles. RSC Adv. 7(88), 55897–55904 (2017). https://doi.org/10.1039/c7ra11175d

    Article  Google Scholar 

  71. L. Wei, Z. Xi, N. Bhattacharya, H.P. Urbach, Excitation of the radiationless anapole mode. Optica 3(8), 799–802 (2016). https://doi.org/10.1364/optica.3.000799

    Article  ADS  Google Scholar 

  72. J.S. Totero Góngora, A.E. Miroshnichenko, Y.S. Kivshar, A. Fratalocchi, Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (05/31/2017). https://doi.org/10.1038/ncomms15535, http://dharmasastra.live.cf.private.springer.com/articles/ncomms15535#supplementary-information

  73. S.-J. Kim, S.-E. Mun, Y. Lee, H. Park, J. Hong, B. Lee, Nanofocusing of toroidal dipole for simultaneously enhanced electric and magnetic fields using plasmonic waveguide. J. Lightwave Technol. 36(10), 1882–1889 (2018/05/15). [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-36-10-1882

  74. A. Ahmadivand et al., Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens. 2(9), 1359–1368, 2017/09/22 2017, https://doi.org/10.1021/acssensors.7b00478

    Article  Google Scholar 

  75. P.C. Wu et al., Optical anapole metamaterial. ACS Nano 12(2), 1920–1927 (2018/02/27). https://doi.org/10.1021/acsnano.7b08828

    Article  Google Scholar 

  76. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Modern Phys. 82(1), 209–275 (02/03/2010). https://doi.org/10.1103/revmodphys.82.209

    Article  ADS  Google Scholar 

  77. Y. Wu, G. Li, J.P. Camden, Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. (2017/12/07). https://doi.org/10.1021/acs.chemrev.7b00354

    Article  Google Scholar 

  78. S. Guo, N. Talebi, A. Campos, M. Kociak, P.A. van Aken, Radiation of dynamic toroidal moments. ACS Photonics (2019/01/24). https://doi.org/10.1021/acsphotonics.8b01422

    Article  Google Scholar 

  79. A. Losquin et al., Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Letters 15(2), 1229–1237 (2015/02/11). https://doi.org/10.1021/nl5043775

    Article  ADS  Google Scholar 

  80. N. Liu, H. Giessen, Coupling effects in optical metamaterials (in English). Angew. Chem. Int. Edit. 49(51), 9838–9852 (2010). https://doi.org/10.1002/anie.200906211

    Article  Google Scholar 

  81. J.A. Heras, Electric and magnetic fields of a toroidal dipole in arbitrary motion (in English). Phys. Lett. A 249(1–2), 1–9 (1998). https://doi.org/10.1016/S0375-9601(98)00712-9

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talebi, N. (2019). Toroidal Moments Probed by Electron Beams. In: Near-Field-Mediated Photon–Electron Interactions. Springer Series in Optical Sciences, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-33816-9_5

Download citation

Publish with us

Policies and ethics