Skip to main content

Electron–Induced Domain

  • Chapter
  • First Online:
Near-Field-Mediated Photon–Electron Interactions

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 228))

  • 712 Accesses

Abstract

EELS and CL have been introduced as efficient tools for probing nanooptical excitations in single nanostructures, with a nanometre spatial resolution and meV energy resolution. Thanks to the ultrafast interaction of localized relativistic electrons with the optical modes of nanostructures in TEMs, electron beams appear as an ultra-broadband probe of sample resonances. The inelastic interaction of a swift electron with nanostructures can be understood using a useful classical approach, as discussed in the previous chapter, that has been proven to be identical to the quantum-mechanical treatment when averaging over electron impact parameters weighted by the spot intensity (Ritchie and Howie in Philos Mag A 58(5):753–767, 1988 [3]).

Portions of the text of this chapter have been re-published with permission from [1], re-printed under the CC BY license; [2], re-printed under the CC BY license.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Talebi, Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry AU - Talebi, Nahid. Adv. Phys.: X 3(1), 1499438. (2018). https://doi.org/10.1080/23746149.2018.1499438

    MathSciNet  Google Scholar 

  2. N. Talebi, A directional, ultrafast and integrated few-photon source utilizing the interaction of electron beams and plasmonic nanoantennas. New J. Phys. 16(5), 053021 (2014). https://doi.org/10.1088/1367-2630/16/5/053021

    Article  ADS  Google Scholar 

  3. R.H. Ritchie, A. Howie, Inelastic-scattering probabilities in scanning-transmission electron-microscopy (in English). Philos. Mag. A 58(5), 753–767 (1988) (Online). Available: <Go to ISI>://WOS:A1988Q932100005

    Google Scholar 

  4. F.J.G. de Abajo, Optical excitations in electron microscopy (in English). Rev. Mod. Phys. 82(1), 209–275 (2010). https://doi.org/10.1103/revmodphys.82.209

    Article  ADS  Google Scholar 

  5. F.J.G. de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy,” (in English). Phys. Rev. Lett. 100(10) (2008). doi: Artn 106804 10.1103/Physrevlett.100.106804

    Google Scholar 

  6. P. Schattschneider, Fundamentals of Inelastic Electron Scattering (Springer, Wien, 1986)

    Book  Google Scholar 

  7. A. Losquin, M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states (in English). Acs Photonics 2(11), 1619–1627 (2015). https://doi.org/10.1021/acsphotonics.5b00416

    Article  Google Scholar 

  8. A. Losquin et al., Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements (in English). Nano Lett. 15(2), 1229–1237 (2015). https://doi.org/10.1021/nl5043775

    Article  ADS  Google Scholar 

  9. M. Kociak et al., Seeing and measuring in colours: electron microscopy and spectroscopies applied to nano-optics (in English). Cr Phys. 15(2–3), 158–175 (2014). https://doi.org/10.1016/j.crhy.2013.10.003

    Article  ADS  Google Scholar 

  10. T. Coenen, N.M. Haegel, Cathodoluminescence for the 21st century: Learning more from light (in English). Appl. Phys. Rev. 4(3) (2017). doi: Artn 031103 10.1063/1.4985767

    Google Scholar 

  11. T. Coenen, S.V. den Hoedt, A. Polman, A new cathodoluminescence system for nanoscale optics, materials science, and geology. Microsc. Today 24(3), 12–19 (2016). https://doi.org/10.1017/S1551929516000377

    Article  Google Scholar 

  12. T. Coenen, E.J.R. Vesseur, A. Polman, Angle-resolved cathodoluminescence spectroscopy (in English). Appl. Phys. Lett. 99(14) (2011). doi: Artn 143103 10.1063/1.3644985

    Google Scholar 

  13. F.J. García de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100(10), 106804 (2008). https://doi.org/10.1103/physrevlett.100.106804

  14. J. Nelayah et al., Mapping surface plasmons on a single metallic nanoparticle (in English). Nat. Phys. 3(5), 348–353 (2007). https://doi.org/10.1038/nphys575

    Article  Google Scholar 

  15. N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C.T. Koch, P.A. van Aken, Wedge Dyakonov waves and Dyakonov Plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10(7), 6988–6994 (2016). https://doi.org/10.1021/acsnano.6b02968

    Article  Google Scholar 

  16. N. Talebi et al., Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances (in English). ACS Nano 9(7), 7641–7648 (2015). https://doi.org/10.1021/acsnano.5b03024

    Article  MathSciNet  Google Scholar 

  17. L. Gu et al., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets (in English). Phys. Rev. B 83(19) (2011). doi: Artn 195433 10.1103/Physrevb.83.195433

    Google Scholar 

  18. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12(10), 5239–5244 (2012). https://doi.org/10.1021/nl302418n

    Article  ADS  Google Scholar 

  19. E.P. Bellido, Y. Zhang, A. Manjavacas, P. Nordlander, G.A. Botton, Plasmonic coupling of multipolar edge modes and the formation of gap modes (in English). Acs Photonics 4(6), 1558–1565 (2017). https://doi.org/10.1021/acsphotonics.7b00348

    Article  Google Scholar 

  20. A. Campos et al., Plasmonic breathing and edge modes in aluminum nanotriangles (in English). Acs Photonics 4(5), 1257–1263 (2017). https://doi.org/10.1021/acsphotonics.7b00204

    Article  Google Scholar 

  21. Y. Fujiyoshi, T. Nemoto, H. Kurata, Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy (in English). Ultramicroscopy 175, 116–120 (2017). https://doi.org/10.1016/j.ultramic.2017.01.006

    Article  Google Scholar 

  22. D. Rossouw, G.A. Botton, Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding (in English). Phys. Rev. Lett. 110(6) (2013). doi: Artn 066801 https://doi.org/10.1103/physrevlett.1https://doi.org/10.066801

  23. P. Shekhar, M. Malac, V. Gaind, N. Dalili, A. Meldrum, Z. Jacob, Momentum-resolved electron energy loss spectroscopy for mapping the photonic density of states (in English). Acs Photonics 4(4), 1009–1014 (2017). https://doi.org/10.1021/acsphotonics.7b00103

    Article  Google Scholar 

  24. Y. Zhu, P.N.H. Nakashima, A.M. Funston, L. Bourgeois, J. Etheridge, Topologically enclosed aluminum voids as plasmonic nanostructures (in English). ACS Nano 11(11), 11383–11392 (2017). https://doi.org/10.1021/acsnano.7b05944

    Article  Google Scholar 

  25. G. Guzzinati, A. Beche, H. Lourenco-Martins, J. Martin, M. Kociak, J. Verbeeck, Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams (in English). Nat. Commun. 8 (2017). doi:Artn 14999 10.1038/Ncomms14999

    Google Scholar 

  26. L.F. Zagonel et al., Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires. Phys. Rev. B 93(20), 205410 (2016). https://doi.org/10.1103/physrevb.93.205410

  27. N. Talebi, Schrödinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith–Purcell effect. New J. Phys. 18(12), 123006 (2016). https://doi.org/10.1088/1367-2630/18/12/123006

    Article  ADS  Google Scholar 

  28. O.L. Krivanek et al., Vibrational spectroscopy in the electron microscope (in English). Nature 514(7521), 209–212 (2014). https://doi.org/10.1038/nature13870

    Article  ADS  Google Scholar 

  29. A. Konečná et al.

    Google Scholar 

  30. P.R. Edwards, R.W. Martin, Cathodoluminescence nano-characterization of semiconductors. Semicond. Sci. Technol. 26(6), 064005 (2011). https://doi.org/10.1088/0268-1242/26/6/064005

    Article  ADS  Google Scholar 

  31. R.F. Egerton, Electron energy-loss spectroscopy in the TEM (in English). Rep. Prog. Phys. 72(1) (2009). doi:Artn 016502 10.1088/0034-4885/72/1/016502

    Google Scholar 

  32. N. Talebi, W. Sigle, R. Vogelgesang, P. van Aken, Numerical simulations of interference effects in photon-assisted electron energy-loss spectroscopy. New J. Phys. 15(5), 053013 (2013). https://doi.org/10.1088/1367-2630/15/5/053013

    Article  ADS  Google Scholar 

  33. S. Guo et al., Reflection and phase matching in plasmonic gold tapers. Nano Lett. 16(10), 6137–6144 (2016) https://doi.org/10.1021/acs.nanolett.6b02353

    Article  ADS  Google Scholar 

  34. S.J. Smith, E.M. Purcell, Visible light from localized surface charges moving across a grating (in English). Phys. Rev. 92(4), 1069–1069 (1953). doi:https://doi.org/10.1103/physrev.92.1069

    Article  ADS  Google Scholar 

  35. A. Gover, P. Sprangle, A unified theory of magnetic Bremsstrahlung, electrostatic Bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers (in English). Ieee J. Quantum Elect. 17(7), 1196–1215 (1981). https://doi.org/10.1109/Jqe.1981.1071257

    Article  ADS  Google Scholar 

  36. N. Yamamoto, F.J.G. de Abajo, V. Myroshnychenko, Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy (in English). Phys. Rev. B 91(12) (2015). doi:Artn 125144 10.1103/Physrevb.91.125144

    Google Scholar 

  37. J.P. Verboncoeur, Particle simulation of plasmas: review and advances (in English). Plasma Phys. Contr. F 47, A231–A260 (2005). https://doi.org/10.1088/0741-3335/47/5A/017

    Article  ADS  Google Scholar 

  38. C.S. Meierbachtol, A.D. Greenwood, J.P. Verboncoeur, B. Shanker, Conformal electromagnetic particle in cell: a review (in English). IEEE T Plasma Sci. 43(11), 3778–3793 (2015). https://doi.org/10.1109/Tps.2015.2487522

    Article  ADS  Google Scholar 

  39. R. Lee, H.H. Klein, J.P. Boris, Computer-simulation of electromagnetic instabilities in a relativistic plasma (in English). B Am. Phys. Soc. 18(4), 633–633 (1973) (Online). Available: <Go to ISI>://WOS:A1973P314600628

    Google Scholar 

  40. R. Lee, J.P. Boris, I. Haber, Electromagnetic simulation codes for relativistic plasmas (in English). B Am. Phys. Soc. 17(11), 1048–1048 (1972) (Online). Available: <Go to ISI>://WOS:A1972N819700494

    Google Scholar 

  41. R.A. Fonseca et al., Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators (in English). Plasma Phys. Contr. F, 55(12) (2013). doi:Artn 124011 10.1088/0741-3335/55/12/124011

    Google Scholar 

  42. C.G.R. Geddes et al., Laser guiding at relativistic intensities and wakefield particle acceleration in plasma channels (in English). Aip Conf. Proc. 737, 521–527 (2004) (Online). Available: <Go to ISI>://WOS:000226549000055

    Google Scholar 

  43. A. Pukhov, Z.M. Sheng, J. Meyer-ter-Vehn, Particle acceleration in relativistic laser channels (in English). Phys. Plasmas 6(7), 2847–2854 (1999). https://doi.org/10.1063/1.873242

    Article  ADS  Google Scholar 

  44. N. Talebi et al., Merging transformation optics with electron-driven photon sources. Nat. Commun. (2019)

    Google Scholar 

  45. N. Talebi, Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. J. Opt.-Uk 19(10), 103001 (2017). https://doi.org/10.1088/2040-8986/aa8041

    Article  ADS  Google Scholar 

  46. S.N. Lyle, Self Force and Inertia, Old Light on New Ideas (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  47. J.D. Jackson, Classical Electrodynamics (Wiley, USA, 1999)

    MATH  Google Scholar 

  48. A. Bek, R. Vogelgesang, K. Kern, Apertureless scanning near field optical microscope with sub-10 nm resolution. Rev. Sci. Instrum. 77(4), 043703 (2006). https://doi.org/10.1063/1.2190211

    Article  ADS  Google Scholar 

  49. T. Neuman, P. Alonso-González, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, J. Aizpurua, Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photonics Rev. 9(6), 637–649 (2015). https://doi.org/10.1002/lpor.201500031

    Article  ADS  Google Scholar 

  50. B.J.M. Brenny, T. Coenen, A. Polman, Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J. Appl. Phys. 115(24), 244307 (2014). https://doi.org/10.1063/1.4885426

    Article  ADS  Google Scholar 

  51. J.D. Jackson, Classical Electrodynamics (Wiley, USA, 1998)

    MATH  Google Scholar 

  52. M. Esslinger, R. Vogelgesang, Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes (in English). ACS Nano 6(9), 8173–8182 (2012). https://doi.org/10.1021/Nn302864d

    Article  Google Scholar 

  53. S. Glasgow, M. Ware, J. Peatross, Poynting’s theorem and luminal total energy transport in passive dielectric media (in English). Phys. Rev. E 64(4) (2001). doi: Artn 046610 https://doi.org/10.1103/physreve.64.046610

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talebi, N. (2019). Electron–Induced Domain. In: Near-Field-Mediated Photon–Electron Interactions. Springer Series in Optical Sciences, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-33816-9_4

Download citation

Publish with us

Policies and ethics