Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 228))

  • 736 Accesses

Abstract

Here, a short survey on the physics and applications of electron beams interacting with light and polaritons is provided. The focus is on the approaches that will be used throughout the current dissertation to understand and control electron-light interactions. This chapter is organized to systematically cover the sub-systems and fields that are subjects of the investigations and developments in this book: polaritons, electron energy-loss spectroscopy (EELS), cathodoluminescence (CL), and numerical methods for simulating the interactions of electrons with light and nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning Inc., USA, 1976)

    MATH  Google Scholar 

  2. N. Talebi, Optical modes in slab waveguides with magnetoelectric effect (in English). J. Opt. UK 18(5), 055607 (2016). https://doi.org/10.1088/2040-8978/18/5/055607

    Article  ADS  Google Scholar 

  3. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons (in English). Rep. Prog. Phys. 70(1), 1–87 (2007). https://doi.org/10.1088/0034-4885/70/1/R01

    Article  ADS  Google Scholar 

  4. P. Schattschneider, Fundamentals of Inelastic Electron Scattering (Springer, Wien, Austria, 1986)

    Book  Google Scholar 

  5. R. Eisberg, R. Resnick, Quantum Mechanics of Atoms, Molecules, Solids, Nuclei, and Particles, Lecture Notes in Chemistry (Wiley, New York, USA, 1974)

    Google Scholar 

  6. N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures (in English). Chem. Rev. 111(6), 3913–3961 (2011). https://doi.org/10.1021/cr200061k

    Article  Google Scholar 

  7. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H.L. Koppens, F.J.G. de Abajo, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1), 431–440 (2012). https://doi.org/10.1021/nn2037626

    Article  Google Scholar 

  8. P. Nordlander, E. Prodan, Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett. 4(11), 2209–2213 (2004). https://doi.org/10.1021/nl0486160

    Article  ADS  Google Scholar 

  9. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Plasmon hybridization in stacked cut-wire metamaterials. Adv. Mater. 19(21), 3628–3632 (2007). https://doi.org/10.1002/adma.200700123

    Article  Google Scholar 

  10. X. Lu, M. Rycenga, S.E. Skrabalak, B. Wiley, Y. Xia, Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. 60(1), 167–192 (2009). https://doi.org/10.1146/annurev.physchem.040808.090434

    Article  ADS  Google Scholar 

  11. J. Dorfmüller et al., Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 9(6), 2372–2377 (2009). https://doi.org/10.1021/nl900900r

    Article  ADS  Google Scholar 

  12. M. Bosman et al., Surface plasmon damping quantified with an electron nanoprobe. Sci. Rep. 3, 1312 (2013) (online). https://doi.org/10.1038/srep01312. https://www.nature.com/articles/srep01312#supplementary-information

  13. B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y.N. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis (in English). J. Phys. Chem. B 110(32), 15666–15675 (2006). https://doi.org/10.1021/jp0608628

    Article  Google Scholar 

  14. V. Giannini, A.I. Fernandez-Dominguez, S.C. Heck, S.A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters (in English). Chem. Rev. 111(6), 3888–3912 (2011). https://doi.org/10.1021/cr1002672

    Article  Google Scholar 

  15. V. Dziom et al., Observation of the universal magnetoelectric effect in a 3D topological insulator. Nat. Commun. 8, 15197 (2017) (online). https://doi.org/10.1038/ncomms15197. https://www.nature.com/articles/ncomms15197#supplementary-information

  16. T. Morimoto, A. Furusaki, N. Nagaosa, Topological magnetoelectric effects in thin films of topological insulators (in English). Phys. Rev. B 92(8), 085113 (2015). https://doi.org/10.1103/physrevb.92.085113

    Article  ADS  Google Scholar 

  17. T. Low et al., Polaritons in layered two-dimensional materials (in English). Nat. Mater. 16(2), 182–194 (2017). https://doi.org/10.1038/NMAT4792

    Article  ADS  Google Scholar 

  18. D.N. Basov, M.M. Fogler, F.J.G. de Abajo, Polaritons in van der Waals materials (in English). Science 354(6309), aag1992 (2016). https://doi.org/10.1126/science.aag1992

    Article  Google Scholar 

  19. J.S. Wu, D.N. Basov, M.M. Fogler, Topological insulators are tunable waveguides for hyperbolic polaritons (in English). Phys. Rev. B 92(20), 205430 (2015). https://doi.org/10.1103/physrevb.92.205430

    Article  ADS  Google Scholar 

  20. T. Stauber, Plasmonics in Dirac systems: from graphene to topological insulators (in English). J Phys Condens Mat 26(12), 123201 (2014). https://doi.org/10.1088/0953-8984/26/12/123201

    Article  Google Scholar 

  21. A. Manjavacas, F.J.G. de Abajo, Tunable plasmons in atomically thin gold nanodisks (in English). Nat. Commun. 5, 3548 (2014). https://doi.org/10.1038/ncomms4548

    Article  ADS  Google Scholar 

  22. F.J.G. de Abajo, A. Manjavacas, Plasmonics in atomically thin materials. Faraday Discuss. 178, 87–107. https://doi.org/10.1039/c4fd00216d

    Article  ADS  Google Scholar 

  23. A. Woessner et al., Highly confined low-loss plasmons in graphene-boron nitride heterostructures (in English). Nat. Mater. 14(4), 421–425 (2015). https://doi.org/10.1038/NMAT4169

    Article  ADS  Google Scholar 

  24. F.J.G. de Abajo, Graphene plasmonics: challenges and opportunities (in English). ACS Photonics 1(3), 135–152 (2014). https://doi.org/10.1021/ph400147y

    Article  Google Scholar 

  25. Y. Ding et al., Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett. 15(7), 4393–4400 (2015). https://doi.org/10.1021/acs.nanolett.5b00630

    Article  ADS  Google Scholar 

  26. E.W. Hill, A. Vijayaragahvan, K. Novoselov, Graphene sensors (in English). IEEE Sens. J. 11(12), 3161–3170 (2011). https://doi.org/10.1109/Jsen.2011.2167608

    Article  ADS  Google Scholar 

  27. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011). https://doi.org/10.1126/science.1202691

    Article  ADS  Google Scholar 

  28. F.J. Alfaro-Mozaz et al., Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017) (online), https://doi.org/10.1038/ncomms15624. https://www.nature.com/articles/ncomms15624#supplementary-information

  29. A.A. Govyadinov et al., Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope (in English). Nat. Commun. 8, 95 (2017). https://doi.org/10.1038/s41467-017-00056-y

    Article  ADS  Google Scholar 

  30. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials (in English). Nat. Photonics 7(12), 948–957 (2013). https://doi.org/10.1038/Nphoton.2013.243

    Article  ADS  Google Scholar 

  31. R.S. Kshetrimayum, A brief intro to metamaterials. IEEE Potentials 23(5), 44–46 (2005). https://doi.org/10.1109/MP.2005.1368916

    Article  Google Scholar 

  32. Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Broadband Purcell effect: radiative decay engineering with metamaterials (in English). Appl. Phys. Lett. 100(18), 181105 (2012). https://doi.org/10.1063/1.4710548

    Article  ADS  Google Scholar 

  33. N. Talebi, C. Ozsoy-Keskinbora, H.M. Benia, K. Kern, C.T. Koch, P.A. van Aken, Wedge Dyakonov waves and Dyakonov plasmons in topological insulator Bi2Se3 probed by electron beams (in English). ACS Nano 10(7), 6988–6994 (2016). https://doi.org/10.1021/acsnano.6b02968

    Article  Google Scholar 

  34. Y.R. He, S.L. He, X.D. Yang, Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials (in English). Opt. Lett. 37(14), 2907–2909 (2012) (Online). Available: <Go to ISI>://WOS:000306709900046

    Google Scholar 

  35. E.E. Narimanov, A.V. Kildishev, Metamaterials naturally hyperbolic (in English). Nat. Photonics 9(4), 214–216 (2015). https://doi.org/10.1038/nphoton.2015.56

    Article  ADS  Google Scholar 

  36. F. Wilczek, Two applications of axion electrodynamics. Phys. Rev. Lett. 58(18), 1799–1802 (1987). https://doi.org/10.1103/physrevlett.58.1799

    Article  ADS  Google Scholar 

  37. J. Dorfmuller et al., Near-field dynamics of optical Yagi-Uda nanoantennas (in English). Nano Lett. 11(7), 2819–2824 (2011). https://doi.org/10.1021/nl201184n

    Article  ADS  Google Scholar 

  38. D. Podbiel et al., Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields (in English). Nano Lett. 17(11), 6569–6574 (2017). https://doi.org/10.1021/acs.nanolett.7b02235

    Article  ADS  Google Scholar 

  39. T. Coenen, B.J.M. Brenny, E.J. Vesseur, A. Polman, Cathodoluminescence microscopy: optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bull. 40(4), 359–365 (2015). https://doi.org/10.1557/mrs.2015.64

    Article  Google Scholar 

  40. L. Novotny, The history of near-field optics (in English). Prog. Opt. 50, 137–184 (2007). https://doi.org/10.1016/S0079-6638(07)50005-3

    Article  ADS  Google Scholar 

  41. F. Keilmann, R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004). https://doi.org/10.1098/rsta.2003.1347

    Article  ADS  Google Scholar 

  42. B. Knoll, F. Keilmann, Near-field probing of vibrational absorption for chemical microscopy. Nature 399(6732), 134–137 (1999). https://doi.org/10.1038/20154

    Article  ADS  Google Scholar 

  43. B. Knoll, F. Keilmann, Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182(4–6), 321–328 (2000). https://doi.org/10.1016/s0030-4018(00)00826-9

    Article  ADS  Google Scholar 

  44. R.C. Dunn, Near-field scanning optical microscopy. Chem. Rev. 99(10), 2891–2928 (1999). https://doi.org/10.1021/cr980130e

    Article  Google Scholar 

  45. M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future (in English). Opt. Express 19(22), 22029–22106 (2011). https://doi.org/10.1364/Oe.19.022029

    Article  ADS  Google Scholar 

  46. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides (vol 93, 137404, 2004) (in English). Phys. Rev. Lett. 106(1), 019901 (2011). https://doi.org/10.1103/physrevlett.106.019901

    Article  ADS  Google Scholar 

  47. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides (in English). Phys. Rev. Lett. 93(13), 137404 (2004). https://doi.org/10.1103/physrevlett.93.137404

    Article  ADS  Google Scholar 

  48. D. Sadiq, J. Shirdel, J.S. Lee, E. Selishcheva, N. Park, C. Lienau, Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett. 11(4), 1609–1613 (2011). https://doi.org/10.1021/nl1045457

    Article  ADS  Google Scholar 

  49. P. Groß, M. Esmann, S.F. Becker, J. Vogelsang, N. Talebi, C. Lienau, Plasmonic nanofocusing—grey holes for light. Adv. Phys. X, 1–34 (2016). https://doi.org/10.1080/23746149.2016.1177469

    Article  Google Scholar 

  50. A. Kubo, N. Pontius, H. Petek, Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 7(2), 470–475 (2007). https://doi.org/10.1021/nl0627846

    Article  ADS  Google Scholar 

  51. A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, H.K. Kim, Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5(6), 1123–1127 (2005). https://doi.org/10.1021/nl0506655

    Article  ADS  Google Scholar 

  52. L. Douillard et al., Short range plasmon resonators probed by photoemission electron microscopy (in English). Nano Lett. 8(3), 935–940 (2008). https://doi.org/10.1021/nl080053v

    Article  ADS  Google Scholar 

  53. B. Frank et al., Short-range surface plasmonics: localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface. Sci. Adv. 3(7), e1700721 (2017). https://doi.org/10.1126/sciadv.1700721

    Article  ADS  Google Scholar 

  54. M. Großmann et al., Light-triggered control of plasmonic refraction and group delay by photochromic molecular switches. ACS Photonics 2(9), 1327–1332 (2015). https://doi.org/10.1021/acsphotonics.5b00315

    Article  Google Scholar 

  55. W. Quan et al., Quantum interference in laser-induced nonsequential double ionization (in English). Phys. Rev. A 96(3), 032511 (2017). https://doi.org/10.1103/physreva.96.032511

    Article  ADS  Google Scholar 

  56. C.F.D. Faria, T. Shaaran, X. Liu, W. Yang, Quantum interference in laser-induced nonsequential double ionization in diatomic molecules: role of alignment and orbital symmetry (in English). Phys. Rev. A 78(4), 043407 (2008). https://doi.org/10.1103/physreva.78.043407

    Article  ADS  Google Scholar 

  57. D. Pengel, S. Kerbstadt, L. Englert, T. Bayer, M. Wollenhaupt, Control of three-dimensional electron vortices from femtosecond multiphoton ionization. Phys. Rev. A 96(4), 043426 (2017). https://doi.org/10.1103/physreva.96.043426

    Article  ADS  Google Scholar 

  58. L. Seiffert, T. Paschen, P. Hommelhoff, T. Fennel, High-order above-threshold photoemission from nanotips controlled with two-color laser fields (in English). J. Phys. B At. Mol. Opt. 51(13), 134001 (2018). https://doi.org/10.1088/1361-6455/aac34f

    Article  ADS  Google Scholar 

  59. T. Coenen, N.M. Haegel, Cathodoluminescence for the 21st century: learning more from light (in English). Appl. Phys. Rev. 4(3), 031103 (2017). https://doi.org/10.1063/1.4985767

    Article  ADS  Google Scholar 

  60. M. Kociak, L.F. Zagonel, Cathodoluminescence in the scanning transmission electron microscope (in English). Ultramicroscopy 176, 112–131 (2017). https://doi.org/10.1016/j.ultramic.2017.03.014

    Article  Google Scholar 

  61. R. GĂłmez-Medina, N. Yamamoto, M. Nakano, F.J.G. de Abajo, Mapping plasmons in nanoantennas via cathodoluminescence. New J. Phys. 10(10), 105009 (2008). https://doi.org/10.1088/1367-2630/10/10/105009

    Article  ADS  Google Scholar 

  62. B.J.M. Brenny, T. Coenen, A. Polman, Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J. Appl. Phys. 115(24), 244307 (2014). https://doi.org/10.1063/1.4885426

    Article  ADS  Google Scholar 

  63. F.J.G. de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82(1), 209–275 (2010). https://doi.org/10.1103/revmodphys.82.209

    Article  ADS  Google Scholar 

  64. V.L. Ginzburg, I.M. Frank, Radiation of a uniformly moving electron due to its transition from one medium into another. J. Phys. (USSR) 9, 353–362 (1945)

    Google Scholar 

  65. A. Petersson, A. Gustafsson, L. Samuelson, S. Tanaka, Y. Aoyagi, Cathodoluminescence spectroscopy and imaging of individual GaN dots (in English). Appl. Phys. Lett. 74(23), 3513–3515 (1999). https://doi.org/10.1063/1.124147

    Article  ADS  Google Scholar 

  66. P.R. Edwards, R.W. Martin, Cathodoluminescence nano-characterization of semiconductors. Semicond. Sci. Technol. 26(6), 064005 (2011). https://doi.org/10.1088/0268-1242/26/6/064005

    Article  ADS  Google Scholar 

  67. L.F. Zagonel et al., Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires. Phys. Rev. B 93(20), 205410 (2016). https://doi.org/10.1103/physrevb.93.205410

    Article  ADS  Google Scholar 

  68. T. Coenen, S.V. den Hoedt, A. Polman, A new cathodoluminescence system for nanoscale optics, materials science, and geology. Microsc. Today 24(3), 12–19 (2016). https://doi.org/10.1017/S1551929516000377

    Article  Google Scholar 

  69. F.J.G. de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100(10), 106804 (2008). https://doi.org/10.1103/physrevlett.100.106804

    Article  ADS  Google Scholar 

  70. N. Talebi et al., Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances. ACS Nano 9(7), 7641–7648 (2015). https://doi.org/10.1021/acsnano.5b03024

    Article  MathSciNet  Google Scholar 

  71. R.F. Egerton, Electron energy-loss spectroscopy in the TEM (in English). Rep. Prog. Phys. 72(1), 016502 (2009). https://doi.org/10.1088/0034-4885/72/1/016502

    Article  ADS  Google Scholar 

  72. O.L. Krivanek et al., Vibrational spectroscopy in the electron microscope (in English). Nature 514(7521), 209–+ (2014). https://doi.org/10.1038/nature13870

    Article  ADS  Google Scholar 

  73. A. Konecna, et al., Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Phys. Rev. B 98, 205409 (2018)

    Google Scholar 

  74. A. Losquin, M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states. ACS Photonics 2(11):1619–1627 (2015)

    Article  Google Scholar 

  75. L. Gu et al., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets (in English). Phys. Rev. B 83(19), 195433 (2011). https://doi.org/10.1103/physrevb.83.195433

    Article  ADS  Google Scholar 

  76. N. Talebi, W. Sigle, R. Vogelgesang, P. van Aken, Numerical simulations of interference effects in photon-assisted electron energy-loss spectroscopy. New J. Phys. 15(5), 053013 (2013). https://doi.org/10.1088/1367-2630/15/5/053013

    Article  ADS  Google Scholar 

  77. N. Talebi, A directional, ultrafast and integrated few-photon source utilizing the interaction of electron beams and plasmonic nanoantennas. New J. Phys. 16(5), 053021 (2014). https://doi.org/10.1088/1367-2630/16/5/053021

    Article  ADS  Google Scholar 

  78. N. Talebi, Schrödinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith-Purcell effect. New J. Phys. 18(12), 123006 (2016). https://doi.org/10.1088/1367-2630/18/12/123006

    Article  ADS  Google Scholar 

  79. N. Talebi, Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry. Adv. Phys. X 3(1), 1499438 (2018). https://doi.org/10.1080/23746149.2018.1499438

    Article  MathSciNet  Google Scholar 

  80. L. Kiewidt, M. Karamehmedović, C. Matyssek, W. Hergert, L. Mädler, T. Wriedt, Numerical simulation of electron energy loss spectroscopy using a generalized multipole technique. Ultramicroscopy 133, 101–108 (2013). https://doi.org/10.1016/j.ultramic.2013.07.001

    Article  Google Scholar 

  81. T. Wriedt, Y. Eremin (eds.), The Generalized Multipole Technique for Light Scattering: Recent Developments (Springer International Publishing, Switzerland, 2018)

    Google Scholar 

  82. Q. Liang et al., Investigating hybridization schemes of coupled split-ring resonators by electron impacts. Opt. Express 23(16), 20721–20731 (2015). https://doi.org/10.1364/oe.23.020721

    Article  ADS  Google Scholar 

  83. C. Matyssek, J. Niegemann, W. Hergert, K. Busch, Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method. Photonics Nanostruct. Fundam. Appl. 9(4), 367–373 (2011). https://doi.org/10.1016/j.photonics.2011.04.003

    Article  ADS  Google Scholar 

  84. Y. Cao, A. Manjavacas, N. Large, P. Nordlander, Electron energy-loss spectroscopy calculation in finite-difference time-domain package. ACS Photonics 2(3), 369–375 (2015). https://doi.org/10.1021/ph500408e

    Article  Google Scholar 

  85. S. Guo, N. Talebi, A. Campos, M. Kociak, P.A. van Aken, Radiation of dynamic toroidal moments. ACS Photonics 6, 467–474 (2019). https://doi.org/10.1021/acsphotonics.8b01422

    Article  Google Scholar 

  86. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12(10), 5239–5244 (2012). https://doi.org/10.1021/nl302418n

    Article  ADS  Google Scholar 

  87. N. Talebi, S. Guo, A. van AkenPeter, Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. Nanophotonics 7, 93 (2018)

    Article  Google Scholar 

  88. S. Guo, N. Talebi, P.A. van Aken, Long-range coupling of toroidal moments for the visible. ACS Photonics 5(4), 1326–1333 (2018). https://doi.org/10.1021/acsphotonics.7b01313

    Article  Google Scholar 

  89. N. Talebi, B. Ögüt, W. Sigle, R. Vogelgesang, P.A. van Aken, On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities. Appl. Phys. A 116(3), 947–954 (2014). https://doi.org/10.1007/s00339-014-8532-y

    Article  ADS  Google Scholar 

  90. S. Guo et al., Reflection and phase matching in plasmonic gold tapers. Nano Lett. 16(10), 6137–6144 (2016). https://doi.org/10.1021/acs.nanolett.6b02353

    Article  ADS  Google Scholar 

  91. N. Talebi, Spectral interferometry with electron microscopes. Sci. Rep. 6, 33874 (2016) (online). https://doi.org/10.1038/srep33874. https://www.nature.com/articles/srep33874#supplementary-information

  92. N. Talebi et al., Merging transformation optics with electron-driven photon sources. Nat. Commun. (2019) (accepted)

    Google Scholar 

  93. N. Talebi, Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. J. Opt. UK 19(10), 103001 (2017). https://doi.org/10.1088/2040-8986/aa8041

    Article  ADS  Google Scholar 

  94. O.L. Krivanek et al., Vibrational spectroscopy in the electron microscope. Nature 514, 209 (2014). https://doi.org/10.1038/nature13870. (online)

    Article  ADS  Google Scholar 

  95. B. Barwick, D.J. Flannigan, A.H. Zewail, Photon-induced near-field electron microscopy. Nature 462, 902 (2009) (online). https://doi.org/10.1038/nature08662. https://www.nature.com/articles/nature08662#supplementary-information

    Article  ADS  Google Scholar 

  96. N. Talebi Sarvari, Method and devices for time-resolved pump-probe electron microscopy. USA Patent Appl. US20170271123A1, 2018

    Google Scholar 

  97. K. Mizuno, J. Pae, T. Nozokido, K. Furuya, Experimental evidence of the inverse Smith-Purcell effect. Nature 328(6125), 45–47 (1987). https://doi.org/10.1038/328045a0

    Article  ADS  Google Scholar 

  98. J. Vogelsang et al., Plasmonic-nanofocusing-based electron holography. ACS Photonics 5(9), 3584–3593 (2018). https://doi.org/10.1021/acsphotonics.8b00418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talebi, N. (2019). Introduction. In: Near-Field-Mediated Photon–Electron Interactions. Springer Series in Optical Sciences, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-33816-9_1

Download citation

Publish with us

Policies and ethics