Skip to main content

Tissue Germination Evaluation on Implants Based on Shearlet Transform and Color Coding

  • Chapter
  • First Online:
Book cover Computer Vision in Advanced Control Systems-5

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 175))

Abstract

The chapter is devoted to computational methods for evaluation the indicators of the tissue regeneration process using as an example the medical data of mesh nickelide titanium implants obtained during clinical experiment. Processing and analysis of scanning electron microscopy and classical histological data are performed using a set of algorithms and their modifications, which allows simplify the data analysis procedure and improve the accuracy of estimates (15–20%). The proposed technique as a computational toolkit for analyzing the dynamics of the process under study, as well as. For highlighting the internal geometric features of the experimental images of objects of interest contains algorithms of shearlet and wavelet transforms and the algorithms for elastic maps generation with color coding, which allows to obtain more representative visualization of spatial data. An important aspect of the proposed methodology is a use of brightness correction by algorithm based on Retinex technology. It allows to obtain unified average brightness of analyzed images and, in some cases, increase local contrast, as a result it affects the quality of application of the computer-based evaluation tools offered in the work. Thus, the estimation errors are reduced by 1–5% in compared to processing without brightness correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khodorenko, V.N., Anikeev, S.G., Kokorev, O.V., Mukhamedov, M.R., Topolnitskiy, E.B., Gunther, V.E.: Structural features of TiNi-based Textile materials and their biocompatibility with cell culture. KnE Mater. Sci. 2(1), 16–24 (2017)

    Article  Google Scholar 

  2. Zaworonkow, D., Chekan, V., Kusnierz, K., Lekstan, A., Grajoszek, A., Lekston, Z., Lange, D., Chekalkin, T., Kang, J., Gunther, V. and Lampe P.: Evaluation of TiNi-based wire mesh implant for abdominal wall defect management. Biomed. Phys. Eng. Express 4(2), 027010.1– 027010.12 (2018)

    Article  Google Scholar 

  3. Muhamedov, M., Kulbakin, D., Gunther, V., Choynzonov, E., Chekalkin, T., Hodorenko, V.: Sparing surgery with the use of TINI-based endografts in larynx cancer patients. J. Surg. Oncol. 111, 231–236 (2015)

    Article  Google Scholar 

  4. Iriyanov, Y.M., Chernov, V.F., Radchenko, S.A., Chernov, A.V.: Plastic efficiency of different implants used for repair of soft and bone tissue defects. Bull. Exp. Biol. Med. 155(4), 518–521 (2013)

    Article  Google Scholar 

  5. Topolnitskiy, E.B., Dambaev, G.T., Hodorenko, V.N., Fomina, T.I., Shefer, N.A., Gunther, V.E.: Tissue reaction to a titanium-nickelide mesh implant after plasty of postresection defects of anatomic structures of the chest. Bull. Exp. Biol. Med. 153(3), 385–388 (2012)

    Article  Google Scholar 

  6. Cobb, W.: A current review of synthetic meshes in abdominal wall reconstruction. Plast. Reconstr. Surg. 142(3S), 64S–71S (2018)

    Article  Google Scholar 

  7. Baumann, D.P., Butler, C.E.: Bioprosthetic mesh in abdominal wall reconstruction. Semin. Plast. Surg. 26(1), 18–24 (2012)

    Article  Google Scholar 

  8. Lanier, S.T., Fligor, J.E., Miller, K.R., Dumanian, G.A.: Reliable complex abdominal wall hernia repairs with a narrow, well-fixed retrorectus polypropylene mesh: a review of over 100 consecutive cases. Surgery 160(6), 1508–1516 (2016)

    Article  Google Scholar 

  9. El-Khatib, H.A., Bener, A.: Abdominal dermolipectomy in an abdomen with pre-existing scars: a different concept. Plast. Reconstr. Surg. 114(4), 992–997 (2004)

    Article  Google Scholar 

  10. Vidal, P., Berner, J.E., Will, P.A.: Managing complications in abdominoplasty: a literature review. Arch. Plast. Surg. 44(5), 457–468 (2017)

    Article  Google Scholar 

  11. Deeken, C.R., Lake, S.P.: Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J. Mech. Behav. Biomed. Mater. 74, 411–427 (2017)

    Article  Google Scholar 

  12. Montgomery, A.: The battle between biological and synthetic meshes in ventral hernia repair. Hernia 17, 3–11 (2013)

    Article  Google Scholar 

  13. Binnebosel, M., von Trotha, K.T., Jansen, P.L., Conze, J., Neumann, U.P., Junge, K.: Biocompatibility of prosthetic meshes in abdominal surgery. Semin. Immunopathol. 33(3), 235–243 (2011)

    Article  Google Scholar 

  14. Dambaev, G.T., Gunther, V.E., Menschikov, A.V., Solovev, M., Avdoshina, E.A., Fatushina, O.A., Kurtseitov, N.E.: Laparascopic hernia repair with the use of TINI-based alloy. KnE Mater. Sci. 2, 193–199 (2017)

    Article  Google Scholar 

  15. Radkevich, A.A., Gorbunov, N.A., Khodorenko, V.N., Usoltsev, D.M.: Reparative desmogenez in connective tissue defects after the replacement of NITI implants. Implants Shape Mem. 1, 21–25 (in Russian) (2008)

    Google Scholar 

  16. Laschke, M.W., Haufel, J.M., Thorlacius, H., Menger, M.D.: New experimental approach to study host tissue response to surgical mesh materials in vivo. J. Biomed. Mater. Res. A 74(4), 696–704 (2005)

    Article  Google Scholar 

  17. Kolpakov, A.A., Kazantsev, A.A.: Comparative analysis of the results of using titanium silk and polypropylene prostheses in patients with postoperative ventral hernias. Breast Cancer Gastroenterol. Surg. 13, 774–775 (2015)

    Google Scholar 

  18. Ivanov, S.V., Ivanov, I.S., Goryainova, G.N., Tsukanov, A.V., Katunina, T.P.: Comparative tissue morphology in using prostheses from polypropylene and polytetrafluoretilen. Cell Tissue Biol. 6(3), 309–315 (2012)

    Article  Google Scholar 

  19. Roubliova, X.I., Deprest, J.A., Biard, J.M., Ophalvens, L., Gallot, D., Jani, J.C., Van de Ven, C.P., Tibboel, D., Verbeken, E.K.: Morphologic changes and methodological issues in the rabbit experimental model for diaphragmatic hernia. Histol. Histopathol. 25(9), 1105–1116 (2010)

    Google Scholar 

  20. Avtandilov, G.G.: Medical morphometry. Medicine, Moscow (in Russian) (1990)

    Google Scholar 

  21. Bourzac, K.: Software: the computer will see you now. Nature 502(7473), S92–S94 (2013)

    Article  Google Scholar 

  22. Howard, C.V., Reed, M.G.: Unbiased stereology. Three-Dimensional Measurement in Microscopy. Bios Scientific Publishers, Oxford (1998)

    Google Scholar 

  23. Glaser, J., Greene, G., Hendricks, S.: Stereology for Biological Research with a Focus on Neuroscience. MBF Press, Williston (2007)

    Google Scholar 

  24. Hauser, S.: Fast finite shearlet transform: a tutorial. University of Kaiserslautern, Kaiserslautern, Germany (2011)

    Google Scholar 

  25. Guo, K., Labate, D., Lim, W.-Q.: Edge analysis and identification using the continuous shearlet transform. Appl. Comput. Harmon. Anal. 27(1), 24–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kutyniok, G., Sauer, T.: From wavelets to shearlets and back again. In: Neamtu, M., Schumaker, I.I. (eds.) Approximation Theory, vol. XII, pp. 201–209. Hashboro Press, San Antonio, TX, Nachville, TN (2007)

    Google Scholar 

  27. Kutyniok, G., Labate, D.: Introduction to shearlets. In: Kutyniok, G., Labate, D. (eds.) Shearlets: Multiscale Analysis for Multivariate Data, pp. 1–38, LLC. Springer Science + Business Media (2012)

    Google Scholar 

  28. Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cadena, L., Espinosa, N., Cadena, F., Kirillova, S., Barkova, D., Zotin, A.: Processing medical images by new several mathematics shearlet transform. Int. MultiConf. Eng. Comput. Sci. I, 369–371 (2016)

    Google Scholar 

  30. Cadena, L., Espinosa, N., Cadena, F., Korneeva, A., Kruglyakov, A., Legalov, A., Romanenko, A., Zotin, A.: Brain’s tumor image processing using shearlet transform. In: SPIE 10396, Applications of Digital Image Processing XL, 103961B. https://doi.org/10.1117/12.2272792 (2017)

  31. Zotin, A., Simonov, K., Kapsargin, F., Cherepanova, T., Kruglyakov, A., Cadena, L.: Techniques for medical images processing using shearlet transform and color coding. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-4, ISRL, vol. 136, pp. 223–259. Springer, Cham (2018)

    Google Scholar 

  32. Gosset, W.S.: On the error of counting with haemocytometer. Biometrika 5(3), 351–360 (1907)

    Article  Google Scholar 

  33. Noble, D.: Modeling the heart - from genes to cells to the whole organ. Science 295(5560), 1678–1682 (2002)

    Article  Google Scholar 

  34. Setty, Y., Cohen, I.R., Dor, Y., Harel, D.: Four-dimensional realistic modeling of pancreatic organogenesis. PNAS 105(51), 20374–20379 (2008)

    Article  Google Scholar 

  35. Ward, S.T., Rosen, G.D.: Optical disector counting in cryosections and vibratome sections underestimates particle numbers: Effects of tissue quality. Microsc. Res. Tech. 71(1), 60–81 (2008)

    Article  Google Scholar 

  36. Geuna, S., Robecchi, M.G., Raimondo, S.: Morpho-quantitative stereological analysis of peripheral and optic nerve fibers. NeuroQuantol 10(1), 76–86 (2012)

    Google Scholar 

  37. Akazaki, S., Takahashi, T., Nakano, Y., Nishida, T., Mori, H., Takaoka, A., Aoki, H., Chen, H., Kunisada, T., Koike, K.: Three-dimensional analysis of melanosomes isolated from B16 melanoma cells by using ultra high voltage electron microscopy. Microsc. Res. 2, 1–8 (2014)

    Article  Google Scholar 

  38. Takaoka, A., Hasegawa, T., Yoshida, K., Mori, H.: Microscopic tomography with Ultra-HVEM and applications. Ultramicroscopy 108(3), 230–238 (2008)

    Article  Google Scholar 

  39. Kim, Y.J., Jeong, J.Y., Nam, S.Y., Kim, M.J., Oh, J.H., Kim, K.G., Sohn, D.K.: Three dimensional automatic body fat measurement software from CT, and its validation and evaluation. J. Biomed. Sci. Eng. 8, 665–673 (2015)

    Article  Google Scholar 

  40. Shinde, B., Mhaske, D., Dani, A.R.: Study of noise detection and noise removal techniques in medical images. Int. J. Image Graph. Sig. Process. 2, 51–60 (2012)

    Article  Google Scholar 

  41. Sudha, S., Suresh, G.R., Sukanesh, R.: Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. Int. J. Comp. Theory Eng. 1(1), 1793–8201 (2009)

    Google Scholar 

  42. Mamta, J., Mohana, R.: An improved adaptive median filtering method for impulse noise detection. Int. J. Recent Trends Eng. 1(1), 274–278 (2009)

    Google Scholar 

  43. Arin, H.H., Hozheen, O.M., Sardar, P.Y.: Denoising of medical images by using some filters. Int. J. Biotechnol. Res. 3(1), 10–20 (2015)

    Google Scholar 

  44. Kanmani, P., Rajiv, K.A., Deepak, K.P., Ayyappadasan, G.: Performance analysis of noise filters using histopathological tissue images in lung cancer. Int. Res. J. Pharm. 8(1), 50–54 (2017)

    Article  Google Scholar 

  45. Li, Y., Ishitsuka, Y., Hedde, P.N., Nienhaus, G.U.: Fast and efficient molecule detection in localization-based super-resolution microscopy by parallel adaptive histogram equalization. ACS Nano 7(6), 5207–5214 (2013)

    Article  Google Scholar 

  46. Hiremath, P.S., Bannigidad, P., Geeta, S.: Automated identification and classification of white blood cells (leukocytes) in digital microscopicimages. Int. J. Comput. Appl. 2, 59–63 (2010)

    Google Scholar 

  47. Kong, N.S.P., Ibrahim, H., Ooi, C.H., Chieh, D.C.J.: Enhancement of microscopic images using modified self-adaptive plateau histogram equalization. Int. Conf. Comput. Technol. Develop. 2, 308–310 (2009)

    Google Scholar 

  48. Biswajit, B., Pritha, R., Ritamshirsa, C., Biplab, K.S.: Microscopic image contrast and brightness enhancement using multi-scale Retinex and cuckoo search algorithm. Procedia Comput. Sci. 70, 348–354 (2015)

    Article  Google Scholar 

  49. YangDai, T., Zhang, L.: Weighted Retinex algorithm based on histogram for dental CT image enhancement. IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1–4 (2014)

    Google Scholar 

  50. Weizhen, S., Fei, L., Qinzhen, Z.: The applications of improved Retinex algorithm for X-ray medical image enhancement. IEEE International Conference on Computer Science and Service System, pp. 1655–1658 (2012)

    Google Scholar 

  51. Davies, E.: Machine Vision: Theory, Algorithms and Practicalities. Academic (2012)

    Google Scholar 

  52. Szeliski, R.: Computer Vision: Algorithms and applications. Springer London Limited, London (2011)

    Book  MATH  Google Scholar 

  53. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Englewood Cliffs (2008)

    Google Scholar 

  54. Ahmed, A.S.: Comparative study among Sobel, Prewitt and Canny edge detection operators used in image processing. J. Theor. Appl. Inf. Technol. 96, 6517–6525 (2018)

    Google Scholar 

  55. Stosic, Z., Rutesic, P.: An improved Canny Edge detection algorithm for detecting brain tumors in MRI images. Int. J. Signal Process. 3, 11–15 (2018)

    Google Scholar 

  56. Senthil, K.N., Sathyavathy, S.K.N.: Segmentation of renal calculi from CT abdomen images by incorporating FCM and level set approaches. Int. J. Adv. Res. Comput. Commun. Eng. 5(7), 132–138 (2016)

    Google Scholar 

  57. Cadena, L., Zotin, A., Cadena, F.: Enhancement of medical image using spatial optimized filters and OpenMP technology. Lecture Notes in Engineering and Computer Science. In: International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 324–329 (2018)

    Google Scholar 

  58. Zotin, A.: Fast algorithm of image enhancement based on multi-scale Retinex. Procedia Comput. Sci. 131, 6–14 (2018)

    Article  Google Scholar 

  59. Gorban, A.N., Kegl, B., Wunsch, D.C., Zinovyev, A.Y.: Principal manifolds for data visualization and dimension reduction. LNCSE, Springer, Berlin-Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Zotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zotin, A., Simonov, K., Kapsargin, F., Cherepanova, T., Kruglyakov, A. (2020). Tissue Germination Evaluation on Implants Based on Shearlet Transform and Color Coding. In: Favorskaya, M., Jain, L. (eds) Computer Vision in Advanced Control Systems-5. Intelligent Systems Reference Library, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-030-33795-7_9

Download citation

Publish with us

Policies and ethics