Skip to main content

Object Selection in Computer Vision: From Multi-thresholding to Percolation Based Scene Representation

  • Chapter
  • First Online:
Computer Vision in Advanced Control Systems-5

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 175))

Abstract

We consider several approaches to the multi-threshold analysis of monochromatic images and consequent interpretation of its results in computer vision systems. The key aspect of our analysis is that it is based on a complete scene reconstruction leading to the object based scene representation inspired by principles from percolation theory. As a generalization of the conventional image segmentation, the proposed reconstruction leads to a multi-scale hierarchy of objects, thus allowing embedded objects to be represented at different scales. Using this reconstruction, we next suggest a direct approach to the object selection as a subset of the reconstructed scene based on a posteriori information obtained by multi-thresholding at the cost of the algorithm performance. We consider several geometric invariants as selection algorithm variables and validate our approach explicitly using prominent examples of synthetic models, remote sensing images, and microscopic data of biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaschke, T.: Object based image analyses for remote sensing. ISPRS J. Photogramm. Remote Sens. 65, 2–16 (2010)

    Article  Google Scholar 

  2. Lang, S., Baraldi, A., Tiede1, D., Hay, G., Blaschke, T.: Towards a (GE)OBIA 2.0 manifesto—achievements and open challenges in information & knowledge extraction from big Earth data. In: GEOBIA’2018, Montpellier, pp. 18–22 (2010)

    Google Scholar 

  3. Schlafer, S., Meyer, R.L.: Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods 138, 50–59 (2017)

    Article  Google Scholar 

  4. Atale, N., Gupta, S., Yadav, U.C.S., Rani, V.: Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J. Microsc. 255(1), 7–19 (2014)

    Article  Google Scholar 

  5. Daemen, S., van Zandvoort, M.A.M.J., Parekh, S.H., Hesselink, M.K.C.: Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol. Metab. 5(3), 153–163 (2016)

    Article  Google Scholar 

  6. Liang, J.I., Piper, J., Tang, J.-Y.: Erosion and dilation of binary images by arbitrary structuring elements using interval coding. Pattern Recognit. Lett. 9(3), 201–209 (1989)

    Article  MATH  Google Scholar 

  7. Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersbøll, B.K., Molin, S.: Quantification of biofilm structures by the novel computer program comstat. Microbiology 146(10), 2395–2407 (2000)

    Article  Google Scholar 

  8. Nattkemper, T.W., Twellmann, T., Ritter, H., Schubert, W.: Human vs. machine: evaluation of fluorescence micrographs. Comput. Biol. Med. 33(1), 31–43 (2003)

    Article  Google Scholar 

  9. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)

    Article  Google Scholar 

  10. Klinger-Strobel, M., Suesse, H., Fischer, D., Pletz, M.W., Makarewicz, O.: A novel computerized cell count algorithm for biofilm analysis. PloS One 11(5), e0154937.1–e0154937.22 (2016)

    Article  Google Scholar 

  11. Bogachev, M.I., Volkov, VYu., Markelov, O.A., Trizna, EYu., Baydamshina, D.R., Melnikov, V., Murtazina, R.R., Zelenikhin, P.V., Sharafutdinov, I.S., Kayumov, A.R.: Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS ONE 13(5), e0193267 (2018)

    Article  Google Scholar 

  12. Gao, G.: Statistical modeling of SAR images: a survey. Sensors 10(1), 775–795 (2010)

    Article  Google Scholar 

  13. Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007)

    Article  Google Scholar 

  14. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., Sabatini, D.M.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100.1–R100.11 (2006)

    Article  Google Scholar 

  15. Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E.: Cellprofiler: free, versatile software for automated biological image analysis. Biotechniques 42(1), 71–75 (2007)

    Article  Google Scholar 

  16. Jones, T.R., Kang, I.H., Wheeler, D.B., Lindquist, R.A., Papallo, A., Sabatini, D.M., Golland, P., Carpenter, A.E.: Cellprofiler analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9(1), 482.1–482.17 (2008)

    Article  Google Scholar 

  17. Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.-A., Logan, D.J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., Carpenter, A.E.: Improved structure, function and compatibility for cellprofiler: modular high-throughput image analysis software. Bioinformatics 27(8), 1179–1180 (2011)

    Article  Google Scholar 

  18. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676 (2012)

    Article  Google Scholar 

  19. Zhou, W., Troy, A.: An object-oriented approach for analyzing and characterizing urban landscape at the parcel level. Int. J. Remote Sens. 29(11), 3119–3135 (2008)

    Article  Google Scholar 

  20. Gu, H., Han, Y., Yang, Y., Li, H., Liu, Z., Soergel, U., Blaschke, T., Cui, S.: An efficient parallel multi-scale segmentation method for remote sensing imagery. Remote Sens. 10(4), 590.1–590.18 (2018)

    Article  Google Scholar 

  21. Beyenal, H., Donovan, C., Lewandowski, Z., Harkin, G.: Three-dimensional biofilm structure quantification. J. Microbiol. Methods 59(3), 395–413 (2004)

    Article  Google Scholar 

  22. Sage, D., Donati, L., Soulez, F., Fortun, D., Schmit, G., Seitz, A., Guiet, R., Vonesch, C., Unser, M.: Deconvolutionlab2: an open-source software for deconvolution microscopy. Methods 115, 28–41 (2017)

    Article  Google Scholar 

  23. Naberukhin, Y.I., Voloshin, V., Medvedev, N.: Geometrical analysis of the structure of simple liquids: percolation approach. Mol. Phys. 73, 917–936 (1991)

    Article  Google Scholar 

  24. Dominik, K.G., Shandarin, S.F.: Percolation analysis of nonlinear structures in scale-free two-dimensional simulations. Astrophys. J. 393, 450–463 (1992)

    Article  Google Scholar 

  25. Xie, N., Shi, X., Feng, D., Kuang, B., Li, H.: Percolation backbone structure analysis in electrically conductive carbon fiber reinforced cement composites. Compos. Part B Eng. 43, 3270–3275 (2012)

    Article  Google Scholar 

  26. Chen, B., Guizar-Sicairos, M., Xiong, G., Shemilt, L., Diaz, A., Nutter, J., Burdet, N., Huo, S., Mancuso, M.A., Monteith, A., Vergeer, F., Burgess, A., Robinson, I.: Three-dimensional structure analysis and percolation properties of a barrier marine coating. Sci. Rep. 3, 1177.1–1177.5 (2013)

    Google Scholar 

  27. Jarvis, N., Larsbo, M., Koestel, J.: Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography. Geoderma 287, 71–79 (2017)

    Article  Google Scholar 

  28. Langovoy, M., Wittich, O.: Detection of objects in noisy images and site percolation on square lattices. 1–14 (2009). arXiv:1102.4803v1

  29. Langovoy, M., Habeck, M., Schölkopf, B.: Spatial statistics, image analysis and percolation theory. 1–12 (2011). arXiv:1310.8574v1

  30. Langovoy, M., Wittich, O.: Randomized algorithms for statistical image analysis and site percolation on square lattices. Stat. Neerl. 67, 337–353 (2013)

    Article  MathSciNet  Google Scholar 

  31. Arora, S., Acharya, J., Verma, A., Panigrahi, P.K.: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit. Lett. 29(2), 119–125 (2008)

    Article  Google Scholar 

  32. Yang, J., Yang, Y., Yu, W., Feng, J.: Multi-threshold image segmentation based on k-means and firefly algorithm. In: 3rd International Conference on Multimedia Technology. Atlantis Press, pp. 134–142 (2013)

    Google Scholar 

  33. Priyanka, P., Vasudevarao, K., Sunitha, Y., Sridhar, B.A.: Multi level fuzzy threshold image segmentation method for industrial applications. IOSR J. Electron. Commun. Eng. 12(2), Ver. III, 6–17 (2017)

    Google Scholar 

  34. Fan, J., Meng, J., Saberi, A.A.: Percolation framework of the Earth’s topography. Phys. Rev. E 99, 022304.1–022304.6 (2019)

    Google Scholar 

  35. Cheng, J., Tsai, Y., Hung, W., Wang, S., Yang, M.: Fast and accurate online video object segmentation via tracking parts. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT USA, pp. 7415–7424 (2018)

    Google Scholar 

  36. Wang, M.A.: Multiresolution remotely sensed image segmentation method combining rainfalling watershed algorithm and fast region merging. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVII Part B 1213–1218. Beijing (2008)

    Google Scholar 

  37. Banimelhem, O., Yahya, Y.: Multi-thresholding image segmentation using genetic algorithm. 15th International Conference on Image Processing, Computer Vision, & Pattern Recognition, Las Vegas, Nevada, USA, pp. 1–6 (2012)

    Google Scholar 

  38. Cuevas, E., González, A., Fausto, F., Zaldívar, D., Pérez-Cisneros, M.: Multithreshold segmentation by using an algorithm based on the behavior of locust swarms. Math. Probl. Eng. 2015, 805357.1–805357.25 (2015)

    Google Scholar 

  39. Volkov, V.: Extraction of extended small-scale objects in digital images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-5/W6, 87–93 (2015)

    Article  Google Scholar 

  40. Bogachev, M., Volkov, V., Kolaev, G., Chernova, L., Vishnyakov, I., Kayumov, A.: Selection and quantification of objects in microscopic images: from multi-criteria to multi-threshold analysis. Bionanoscience 9(1), 59–65 (2019)

    Article  Google Scholar 

  41. Bunde, A., Havlin, S.: Fractals and Disordered Systems. Springer, Berlin, Heidelberg (1996)

    Book  MATH  Google Scholar 

  42. Finn, H.M., Johnson, S.: Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimators. RCA Rev. 29(3), 414–465 (1968)

    Google Scholar 

  43. El-Mashade, M.B.: Performance improvement of adaptive detection of radar target in an interference saturated environment. Prog. Electromagn. Res. 2, 57–92 (2008)

    Article  Google Scholar 

  44. Rohling, H.: Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. AES-19(4), 608–621 (1983)

    Article  Google Scholar 

  45. Volkov. V.Yu.: Adaptive and invariant algorithms for object detection in images and their modeling. Saint-Petersburg-Moscow-Krasnodar (in Russian), Lan (2014)

    Google Scholar 

  46. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson (2018)

    Google Scholar 

  47. Volkov, V.Yu.: Adaptive extraction of small objects in digital images. Izv. Vuzov Rossii. Radioelektronika. 1, 17–28 (in Russian) (2017)

    Google Scholar 

  48. Levinshteln, M., Efros, L.: The relation between the critical exponents of percolation theory. Zh. Eksp. Teor. Fiz. 69, 386–392 (1975)

    Google Scholar 

  49. Melnikov, V., Bogachev, M.I., Volkov, V.Y, Markelov, O.A.: Selection and analysis of objects in multi-threshold image processing. In: IEEE Conference on Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, pp. 1202–1205 (2019)

    Google Scholar 

  50. Skolnik, M.: Radar Handbook, 3nd edn. McGraw-Hill (2008)

    Google Scholar 

  51. Baidamshina, D.R., Trizna, E.Y., Holyavka, M.G., Bogachev, M.I., Artyukhov, V.G., Akhatova, F.S., Rozhina, E.V., Fakhrullin, R.F., Kayumov, A.R.: Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci. Rep. 7, 46068 (2017)

    Article  Google Scholar 

  52. Krasichkov, A.S., Grigoriev, E.B., Bogachev, M.I, Nifontov, E.M.: Shape anomaly detection under strong measurement noise: an analytical approach to adaptive thresholding. Phys. Rev. E 92(4), 042927.1–042927.9 (2015)

    Google Scholar 

Download references

Acknowledgements

We like to acknowledge partial support of this research by the Ministry of Science and Higher Education of the Russian Federation in the framework of the basic state assignment of St. Petersburg Electrotechnical University (project No. 2.5475.2017/6.7), as well as, by the Russian Science Foundation (project No. 16-19-00172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Yu. Volkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volkov, V.Y., Bogachev, M.I., Kayumov, A.R. (2020). Object Selection in Computer Vision: From Multi-thresholding to Percolation Based Scene Representation. In: Favorskaya, M., Jain, L. (eds) Computer Vision in Advanced Control Systems-5. Intelligent Systems Reference Library, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-030-33795-7_6

Download citation

Publish with us

Policies and ethics