Skip to main content

A Scheduler for Smart Homes with Probabilistic User Preferences

  • Conference paper
  • First Online:
PRIMA 2019: Principles and Practice of Multi-Agent Systems (PRIMA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11873))

Abstract

Scheduling appliances is a challenging and interesting problem aimed at reducing energy consumption at a residential level. Previous work on appliance scheduling for smart homes assumes that user preferences have no uncertainty. In this paper, we study two approaches to address this problem when user preferences are uncertain. More specifically, we assume that user preferences in turning on or off a device are represented by Normal distributions. The first approach uses sample average approximation, a mathematical model, in computing a schedule. The second one relies on the fact that a scheduling problem could be viewed as a constraint satisfaction problem and uses depth-first search to identify a solution. We also conduct an experimental evaluation of the two approaches to investigate the scalability of each approach in different problem variants. We conclude by discussing computational challenges of our approaches and some possible directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our proposed transformation from a p-scheduling problem \(\mathcal {P}= (P, \mathcal {C})\) to a MILP does satisfy Conditions (3), (4), and (5), but ignores the dependency matrix D in P. We leave a proposal for a complete transformation for future work.

  2. 2.

    One could also use other search algorithms as well because our core contribution here is to formulate the problem into a search problem and propose a number of pruning conditions that can be used with any search strategy.

References

  1. Agnetis, A., De Pascale, G., Detti, P., Vicino, A.: Load scheduling for household energy consumption optimization. IEEE Trans. Smart Grid 4(4), 2364–2373 (2013)

    Article  Google Scholar 

  2. Beaudin, M., Zareipour, H.: Home energy management systems: a review of modelling and complexity. Renew. Sustain. Energy Rev. 45, 318–335 (2015)

    Article  Google Scholar 

  3. Costanzo, G.T., Zhu, G., Anjos, M.F., Savard, G.: A system architecture for autonomous demand side load management in smart buildings. IEEE Trans. Smart Grid 3(4), 2157–2165 (2012)

    Article  Google Scholar 

  4. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling devices in smart homes. In: Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems, pp. 981–989 (2017)

    Google Scholar 

  5. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)

    Article  MathSciNet  Google Scholar 

  6. Le, T., Tabakhi, A.M., Tran-Thanh, L., Yeoh, W., Son, T.C.: Preference elicitation with interdependency and user bother cost. In: Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1459–1875 (2018)

    Google Scholar 

  7. Lee, J., Kim, H.J., Park, G.L., Kang, M.: Energy consumption scheduler for demand response systems in the smart grid. J. Inf. Sci. Eng. 28(5), 955–969 (2012)

    Google Scholar 

  8. Lujano-Rojas, J.M., Monteiro, C., Dufo-López, R., Bernal-Agustín, J.L.: Optimum residential load management strategy for real time pricing (RTP) demand response programs. Energy Policy 45, 671–679 (2012)

    Article  Google Scholar 

  9. Misra, S., Mondal, A., Banik, S., Khatua, M., Bera, S., Obaidat, M.S.: Residential energy management in smart grid: a Markov decision process-based approach. In: Proceedings of the IEEE International Conference on Green Computing and Communications; IEEE Internet of Things; and IEEE Cyber, Physical and Social Computing, pp. 1152–1157 (2013)

    Google Scholar 

  10. Molderink, A., Bakker, V., Bosman, M.G., Hurink, J.L., Smit, G.J.: Domestic energy management methodology for optimizing efficiency in smart grids. In: Proceedings of the IEEE Bucharest PowerTech, pp. 1–7 (2009)

    Google Scholar 

  11. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: Scheduling of demand side resources using binary particle swarm optimization. IEEE Trans. Power Syst. 24(3), 1173–1181 (2009)

    Article  Google Scholar 

  12. Sou, K.C., Weimer, J., Sandberg, H., Karl Henrik, J.: Scheduling smart home appliances using mixed integer linear programming. In: Proceedings of the IEEE Conference on Decision and Control and European Control Conference, pp. 5144–5149 (2011)

    Google Scholar 

  13. Tabakhi, A.M., Le, T., Fioretto, F., Yeoh, W.: Preference elicitation for DCOPs. In: Proceedings of the International Conference on Principles and Practice of Constraint Programming, pp. 278–296 (2017)

    Google Scholar 

  14. Tabakhi, A.M., Yeoh, W., Yokoo, M.: Parameterized heuristics for incomplete weighted CSPs with elicitation costs. In: Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems, pp. 476–484 (2019)

    Google Scholar 

  15. Tarasak, P.: Optimal real-time pricing under load uncertainty based on utility maximization for smart grid. In: Proceedings of the IEEE International Conference on Smart Grid Communications, pp. 321–326 (2011)

    Google Scholar 

  16. Truong, N.C., Baarslag, T., Ramchurn, G., Tran-Thanh, L.: Interactive scheduling of appliance usage in the home. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 869–1467 (2016)

    Google Scholar 

  17. Tsui, K.M., Chan, S.C.: Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans. Smart Grid 3(4), 1812–1821 (2012)

    Article  Google Scholar 

  18. Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: Proceedings of the IEEE PES Innovative Smart Grid Technologies, pp. 1–5 (2012)

    Google Scholar 

Download references

Acknowledgment

This research is partially supported by NSF grants 1242122, 1345232, 1619273, 1623190, 1757207, 1812618, and 1812619. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies, or the U.S. government. We would also like to thank Long Tran-Thanh for initial discussions that influenced the direction of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, V., Yeoh, W., Son, T.C., Kreinovich, V., Le, T. (2019). A Scheduler for Smart Homes with Probabilistic User Preferences. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds) PRIMA 2019: Principles and Practice of Multi-Agent Systems. PRIMA 2019. Lecture Notes in Computer Science(), vol 11873. Springer, Cham. https://doi.org/10.1007/978-3-030-33792-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33792-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33791-9

  • Online ISBN: 978-3-030-33792-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics