Skip to main content

Coordination of Mobile Agents for Simultaneous Coverage

  • Conference paper
  • First Online:
Book cover PRIMA 2019: Principles and Practice of Multi-Agent Systems (PRIMA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11873))

Abstract

Simultaneous environment coverage represents a challenging multi-agent application, in which mobile agents (drones) must cover surfaces by simultaneously capturing images from different viewpoints. It constitutes a complex optimization problem with potentially conflicting criteria, such as mission time and coverage quality, and requires dynamic coordination of agent tasks. In this paper, we introduce a decentralized coordination method, adaptive to a dynamic and a priori unknown 3D environment. Our approach selects the role an agent should take on and coordinates the assignment of agents to their computed viewpoints. Our main goal is to cover all detected objects in the environment at a certain quality as soon as possible. We evaluate the methods in AirSim in different setups and assess how the proposed methods respond to dynamic changes in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Microsoft/AirSim.

  2. 2.

    https://www.unrealengine.com.

  3. 3.

    https://github.com/ros2/ros2.

References

  1. Badreldin, M., Hussein, A., Khamis, A.: A comparative study between optimization and market-based approaches to multi-robot task allocation. Adv. Artif. Intell. 2013, 12 (2013). https://doi.org/10.1155/2013/256524

    Article  Google Scholar 

  2. Berman, S., Halász, Á., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009). https://doi.org/10.1109/TRO.2009.2024997

    Article  Google Scholar 

  3. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon “next-best-view” planner for 3D exploration. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1462–1468. IEEE (2016). https://doi.org/10.1109/ICRA.2016.7487281

  4. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3D exploration and surface inspection. Auton. Robot. 42(2), 291–306 (2018). https://doi.org/10.1007/s10514-016-9610-0

    Article  Google Scholar 

  5. Capitan, J., Spaan, M.T., Merino, L., Ollero, A.: Decentralized multi-robot cooperation with auctioned POMDPs. Int. J. Robot. Res. 32(6), 650–671 (2013). https://doi.org/10.1109/ICRA.2012.6224917

    Article  Google Scholar 

  6. Chang, C., Chatterjee, S.: Quantization error analysis in stereo vision. In: Proceedings of Asilomar Conference on Signals, Systems & Computers, pp. 1037–1041. IEEE (1992). https://doi.org/10.1109/ACSSC.1992.269140

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  8. Fonooni, B., Jevtić, A., Hellström, T., Janlert, L.E.: Applying ant colony optimization algorithms for high-level behavior learning and reproduction from demonstrations. Robot. Auton. Syst. 65, 24–39 (2015). https://doi.org/10.1016/j.robot.2014.12.001

    Article  Google Scholar 

  9. Freundlich, C., Zhang, Y., Zhu, A.Z., Mordohai, P., Zavlanos, M.M.: Controlling a robotic stereo camera under image quantization noise. Int. J. Robot. Res. 36(12), 1268–1285 (2017). https://doi.org/10.1177/0278364917735163

    Article  Google Scholar 

  10. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013). https://doi.org/10.1016/j.robot.2013.09.004

    Article  Google Scholar 

  11. Gallup, D., Frahm, J.M., Mordohai, P., Pollefeys, M.: Variable baseline/resolution stereo. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008). https://doi.org/10.1109/CVPR.2008.4587671

  12. Gerkey, B.P., Mataric, M.J.: Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  13. Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1071–1078. IEEE (2015). https://doi.org/10.1109/ICRA.2015.7139309

  14. Jiang, A.X., Procaccia, A.D., Qian, Y., Shah, N., Tambe, M.: Defender (mis)coordination in security games. In: Twenty-Third International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  15. Khan, A., Rinner, B., Cavallaro, A.: Cooperative robots to observe moving targets: a review. IEEE Trans. Cybern. 48(1), 187–198 (2018). https://doi.org/10.1109/TCYB.2016.2628161

    Article  Google Scholar 

  16. Mazdin, P., Rinner, B.: Efficient and QoS-aware drone coordination for simultaneous environment coverage. In: Proc. IEEE Conference on Multimedia Information Processing and Retrieval, pp. 333–338. IEEE (2019). https://doi.org/10.1109/MIPR.2019.00066

  17. McIntire, M., Nunes, E., Gini, M.: Iterated multi-robot auctions for precedence-constrained task scheduling. In: Proceedings of International Conference on Autonomous Agents & Multiagent Systems, pp. 1078–1086. International Foundation for Autonomous Agents and Multiagent Systems (2016)

    Google Scholar 

  18. Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009). https://doi.org/10.1137/080732730

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakabo, Y., Mukai, T., Hattori, Y., Takeuchi, Y., Ohnishi, N.: Variable baseline stereo tracking vision system using high-speed linear slider. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1567–1572. IEEE (2005). https://doi.org/10.1109/ROBOT.2005.1570337

  20. Nunes, E., Gini, M.: Multi-robot auctions for allocation of tasks with temporal constraints. In: Proceedings of AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  21. Perez-Carabaza, S., Scherer, J., Rinner, B., Lopez-Orozco, J.A., Besada-Portas, E.: UAV trajectory optimization for minimum time search with communication constraints and collision avoidance. Eng. Appl. Artif. Intell. 85, 357–371 (2019)

    Article  Google Scholar 

  22. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Proceedings of Field and Service Robotics (2017)

    Google Scholar 

  23. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press (2011). https://doi.org/10.1017/CBO9780511973031

  24. Weyrer, M., Rinner, B.: UAV motion planning and control for multi-coverage of 3D environments. In: Proceedings of International Conference on Unmanned Aircraft Systems, pp. 939–946 (2018). https://doi.org/10.1109/ICUAS.2018.8453427

  25. Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone networks: communications, coordination, and sensing. Ad Hoc Networks 68(1), 1–15 (2018). https://doi.org/10.1016/j.adhoc.2017.09.001

    Article  Google Scholar 

  26. Yoder, L., Scherer, S.: Autonomous exploration for infrastructure modeling with a micro aerial vehicle. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Field and Service Robotics. STAR, vol. 113, pp. 427–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27702-8_28

    Chapter  Google Scholar 

  27. Zhang, C., Lesser, V.: Coordinated multi-agent reinforcement learning in networked distributed POMDPs. In: Proceedings of AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Karl Popper Kolleg on Networked Autonomous Aerial Vehicles (uav.aau.at) at the University of Klagenfurt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petra Mazdin or Bernhard Rinner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazdin, P., Rinner, B. (2019). Coordination of Mobile Agents for Simultaneous Coverage. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds) PRIMA 2019: Principles and Practice of Multi-Agent Systems. PRIMA 2019. Lecture Notes in Computer Science(), vol 11873. Springer, Cham. https://doi.org/10.1007/978-3-030-33792-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33792-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33791-9

  • Online ISBN: 978-3-030-33792-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics